1 The method
1.1 Recruitment
Since June 2020, I have interviewed 57 of the top social, behavioral, and political scientists, along with several eminent philosophers, wisdom scientists, and futurists. First, the advisory board and I nominated 153 top scholars from around the world. From the list of contacted nominees, 65% responses to the initial inquiry to participate in the interview series. Among those who responded, 37% declined. I ended up scheduling 38% of the scholars on the initial list – a reasonable response rate considering the pandemic-related challenges and the nature of the project.
1.2 Quantifying narratives
To quantify themes in interviews, we relied on a novel Multi-step Bottom-up/Top-down Cross-validation method for analyzing and cross-referencing unstructured qualitative data. in the method, we first rely on classic grounded approach, with two scholars going through the first set of 30 interviews June-July) to identify unique themes for each question in an iterative fashion. Hereby, we followed the following guidelines:
- Each theme should be present at least twice across interviews;
- Themes should have minimum overlap. In other words, they should not be directly reducible, though they could show natural dependencies (e.g., “importance of social connections” and “social support”).
In this initial phase, two independent raters, one of whom was blind to the identity of the interviewees, coded statements on prevalence of determined themes. Initial reliability was good (over 90% agreement), with disagreements resolved via group discussion with the senior scholar. Following iterative procedure, in case additional themes were identified that were not covered by the original categories, they were added to the codebook and statements were recoded for presence of the category.
In the second stage, after interviews were extended into September - December 2020, another two coders (one of whom coded the initial set of 30 interviews) coded the new batch of interviews. Once again, agreement was high (90+%), with disagreements resolved in a group discussion. In this stage, coders identified several additional themes, which were again added to the codebook, with all interviewed cross-examined for presence of these themes. The procedure was repeated four times, until we identified the final list of themes for each question. Here, we also included some simple-occurrence themes if they were fully distinct and addressed the questions.
Coding open-ended interviews is inherently subjective. Even in the presence of high reliability between coders (as in our case), validity of the coding may be compromised due to various additional factors (e.g., a particular sentiment in a response, agreement with the opinion raised in the interview response). To address this issue, we introduce a novel top-down cross-validation approach:
- A new, unbiased person blind to identity of interviewees reviews codes and respective transcripts, with the task to identify one key sentence [or key phrases, in case the theme is not captured by a single sentence] from each person’s response to represent their code, guided by the codebook definitions;
- Two further individuals, incl. the senior author of the project, review these key sentences and flag any categories that required adjustment.
The idea behind this cross-validation approach is that this top-down, bird’s eye view allows for greater clarity when matching codes and themes compared to the classical grounded analysis. By matching each code to a core statement/phrase(s), one introduces extra rigor when evaluating each and every code. Indeed, in the process of such cross-validation, several minor inconsistencies were spotted and corrected prior to conducing subsequent analyses.
1.3 Quantifying reasoning style
Prior research on forecasting suggests that a certain cognitive style may be more conducive for accurate forecasting of geopolitical events, affect and emotions toward close others in social conflict situations. Specifically, research suggests that superior forecasters tend to show greater likelihood of embracing:
- an outsider viewpoint and consider additional baserate information (rather than focus on the focal event alone);
- more complex, dialectical thinking (aspects of which are central to the notions of integrative complexity and wisdom) – i.e., recognize the uncertainty and qualify forecasts by expressing multi-determined nature of predictions and considering both positive and negative aspects of the same forecast.
I sought to quantify the extent to which top experts in behavioral and social sciences apply these aspects of reasoning in their reflections. To this end, my team focused on the forecast-related questions (Q1: positive consequences / Q3: negative consequences). Here, we could categorize responses as those invoking outsider viewpoint and dialectical reasoning and compare % frequencies and type of forecasts among these two groups. A codebook for both categorization types is here. Because dialectical reasoning categorization involved both questions, each participant received only one code (yes=1 / no = 0). For outsider viewpoint, we separately categorized positive and negative responses, which allowed us to compare likelihood of invokingoutsider-view information across questions. Two research assistants, who did not engage in coding prior categories), independently categorized responses on both categories. As analyses below show, inter-rater reliability was medium-large (rules of thumb for Cohen’s kappa suggest h =.5 as medium effect size and h = .8 as large effect size). Disagreements were resolved in a discussion with the senior author and another co-author on the project.
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 57
## Raters = 2
## Kappa = 0.676
##
## z = 5.11
## p-value = 0.000000318
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 56
## Raters = 2
## Kappa = 0.547
##
## z = 4.18
## p-value = 0.0000287
## Cohen's Kappa for 2 Raters (Weights: unweighted)
##
## Subjects = 57
## Raters = 2
## Kappa = 0.651
##
## z = 4.96
## p-value = 0.000000699
2 Descriptives
Beyond US, scientists from Australia, Canada, Korea, Japan, HK, Russia, Germany, Spain, Switzerland, Israel, UK.
The list of luminaries includes past and present presidents/chairs of APS, APA, Psychonomic Society, Society for Personality and Social Psychology, International Association for Cross-cultural Psychology, Society for Affective Science, Cultural Evolution Society, Human Behavior and Evolution Society, along with numerous members of the US National Academy of Sciences, US NAtional Academy of Education, US National Academy of Engineering, US National Academy of Medicine, Royal Canadian Academy, German National Academy of Sciences Leopoldina, Academy of the Social Sciences in Australia, and American Academy of Arts and Sciences.
2.1 Breakdown by gender, location, and expertise
SC - socio-cultural expertise
Non-SC - no socio-cultural expertise
Expertise is roughly equally distributed.
##
## Behavioral Science Business & Leadership
## 1 1
## Clinical Psychology Cognitive Psychology
## 1 4
## Computer Science Consumer Behavior
## 1 1
## Cultural Psychology Developmental Psychology
## 6 1
## Disaster & Emergency Management Emotions
## 1 8
## Environmental History Evolutionary Psychology
## 1 2
## Forecasting Health Psychology
## 3 1
## Judgment & Decision-making Moral Psychology
## 2 1
## Neuropsychiatry Personality
## 1 1
## Philosophy Political Science
## 3 1
## Psychobiology, Epidemiology Psychology & Aging
## 1 2
## Risk Governance & Sustainability Social Psychology
## 1 11
## Sociology & Biosocial Science
## 1
##
## Business Analysis Clinical Psychology
## 1 2
## Cultural Psychology Developmental Psychology
## 4 1
## Health Psychology Judgment & Decision-making
## 1 1
## Moral Psychology Motivation
## 2 2
## Neuroscience Organizational behavior
## 3 1
## Personality Political Science
## 1 2
## Relationship Science Social Psychology
## 1 9
## Wellbeing Wisdom
## 7 3
Only 20% were familiar with wisdom research (either in philosophy or in psychology).
3 Cognitive Style Differences among Experts: Breakdown by dialectical thinking & outsider viewpoint
Almost half of the experts invoked dialectical thinking when reflecting on future consequences of the pandemic. In other words, they pointed out that the same theme could have both positive and negative consequences. This way, they also communicated their uncertainty in the downstream impact of selected themes.
Less than a third of experts invoked baserates or other outsider view information when qualifying their prediction for positive (25%) or negative forecasts (27%). Ten percent of experts brought baserate or other outsider view considerations in reflection on both scenarios. These was no substantial difference between consideration of baserates when forecasting positive vs. negative consequences.
##
## 0 1
## 0.754386 0.245614
##
## 0 1
## 0.7321429 0.2678571
##
## 0 1 2
## 0.5964912 0.2982456 0.1052632
About 22 % of participants wrote on the topic of wisdom whereas the majority did not know much about wisdom scholarship, with some scholars expolicitly stating they don’t know what wisdom refers to, in which case they were referred to the broad definition concerning “attitudes, strategies, and behaviors that can help master the pandemic.”
4 Positive Consequences
4.1 Summary
4.1.1 A great degree of variability in themes
We identified 20 distinct themes.
Most themes mentioned by less than 10% of the interviewees.
Only three themes were mentioned by at least ten people: greater (appreciation of) social connectedness, opportunity for political engagement/structural change viewed, and solidarity.
- Greater (appreciation of) social connectedness, and opportunity for political engagement/structural change viewed, and solidarity as most pos outcomes.
- Additionally: opportunity to re-evaluate habits and embracing new technology.
- Greater (appreciation of) social connectedness and solidarity, as well as resilience more frequent among women, and opportunity for political engagement/structural change and reconsider habits more frequent among men. Reflecting gender roles?
- Socio-cultural experts are more likely to mention social connectedness and opportunity for political engagement/structural change, whereas non-SC experts folked more on reconsidering habits.
4.2 Frequency Chart
4.3 How many themes per person?
Did people just report 1-2 themes or a great number of themes? How do such trends vary across people?
The majority of people mention only one or two themes here. The median was two themes (as indicated by vertical red line). One-fifth mentioned three themes, and only 3 people mentioned 4 themes (and one person mentioned five themes).
4.4 Frequencies by Gender and Field (Socio-cultural vs. Other fields)
What is important here is that the focus on social-structural issues was not only present among experts in social psychology or cultural matters but also among experts studying other areas of psychology or political science.
4.5 Frequencies by Cognitive Style: Dialectical Thinking and Consideration of Outsider Viewpoint
It appears that people invoking dialecticism in their reasoning were similar in their positive forecasts as those who did not show dialecticism.
The only noticeable exception is the much greater emphasis on social connectedness among scholars showing dialecticism in their reasoning.
It also appears that people invoking baserate/outsider view information in their reasoning were also quite similar in their positive forecasts as those who did not mention baserate info. There are some differences, but they may be due to differences in sub-sample size.
The only noticeable exceptions are:
- greater focus on resilience and wellbeing among baseraters and greater focus on reconsidering habits among non-baseraters.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * Dialectic_Final + (1 | Name)
## Data: Q1.data.Dia.long
##
## AIC BIC logLik deviance df.resid
## 765.0 971.6 -341.5 683.0 1099
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.7454 -0.4000 -0.2722 -0.1890 5.2915
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0 0
## Number of obs: 1140, groups: Name, 57
##
## Fixed effects:
## Estimate
## (Intercept) -2.602681299
## Themecritical.thinking_q1 -0.729499026
## Themeembrace.new.tech_q1 0.770092063
## Themegratitude_q1 -0.000022158
## Themehealth...well.being_q1 -0.000008376
## Themeimproved.care.for.elders_q1 -16.890675159
## Themeimproved.work.life.balance_q1 -0.000001898
## Themeincreased.interest.in.science_q1 -0.729528487
## Themelearning.from.pandemics_q1 -0.000017574
## Themeliving.in.the.moment_q1 -0.729524123
## Themenature_q1 0.443198807
## Themeoptimism...positivity_q1 -0.729540675
## Themepersonal.resilience_q1 0.443189739
## Themepolitical.engagement...structural.change_q1 1.258942946
## Themeprosocial.behavior_q1 0.770103904
## Themereconsidering.habits_q1 1.034078012
## Themeshared.humanity_q1 -0.729530380
## Themesocial.connectedness_q1 1.034076301
## Themesolidarity_q1 1.258938047
## Themesympathy...compassion_q1 -0.729524424
## Dialectic_Final1 0.810923150
## Themecritical.thinking_q1:Dialectic_Final1 -0.043693060
## Themeembrace.new.tech_q1:Dialectic_Final1 -0.504386528
## Themegratitude_q1:Dialectic_Final1 0.000022661
## Themehealth...well.being_q1:Dialectic_Final1 -0.773186273
## Themeimproved.care.for.elders_q1:Dialectic_Final1 15.386599458
## Themeimproved.work.life.balance_q1:Dialectic_Final1 -0.773183644
## Themeincreased.interest.in.science_q1:Dialectic_Final1 -21.073004533
## Themelearning.from.pandemics_q1:Dialectic_Final1 -0.773165726
## Themeliving.in.the.moment_q1:Dialectic_Final1 -0.774554843
## Themenature_q1:Dialectic_Final1 -0.771711568
## Themeoptimism...positivity_q1:Dialectic_Final1 -0.774519654
## Themepersonal.resilience_q1:Dialectic_Final1 -0.771694241
## Themepolitical.engagement...structural.change_q1:Dialectic_Final1 -0.565799280
## Themeprosocial.behavior_q1:Dialectic_Final1 -1.543298012
## Themereconsidering.habits_q1:Dialectic_Final1 -0.768381487
## Themeshared.humanity_q1:Dialectic_Final1 0.729534252
## Themesocial.connectedness_q1:Dialectic_Final1 0.169888979
## Themesolidarity_q1:Dialectic_Final1 -0.993229409
## Themesympathy...compassion_q1:Dialectic_Final1 -0.774544804
## Std. Error
## (Intercept) 0.732756870
## Themecritical.thinking_q1 1.254003007
## Themeembrace.new.tech_q1 0.909356561
## Themegratitude_q1 1.036288199
## Themehealth...well.being_q1 1.036332997
## Themeimproved.care.for.elders_q1 742.901509747
## Themeimproved.work.life.balance_q1 1.036323264
## Themeincreased.interest.in.science_q1 1.254018557
## Themelearning.from.pandemics_q1 1.036351074
## Themeliving.in.the.moment_q1 1.253933172
## Themenature_q1 0.953279157
## Themeoptimism...positivity_q1 1.254071350
## Themepersonal.resilience_q1 0.953300950
## Themepolitical.engagement...structural.change_q1 0.864332100
## Themeprosocial.behavior_q1 0.909365633
## Themereconsidering.habits_q1 0.882393657
## Themeshared.humanity_q1 1.254082822
## Themesocial.connectedness_q1 0.882380751
## Themesolidarity_q1 0.864347684
## Themesympathy...compassion_q1 1.253972615
## Dialectic_Final1 0.910234626
## Themecritical.thinking_q1:Dialectic_Final1 1.550005190
## Themeembrace.new.tech_q1:Dialectic_Final1 1.167043410
## Themegratitude_q1:Dialectic_Final1 1.287288693
## Themehealth...well.being_q1:Dialectic_Final1 1.379883734
## Themeimproved.care.for.elders_q1:Dialectic_Final1 742.901489059
## Themeimproved.work.life.balance_q1:Dialectic_Final1 1.379859167
## Themeincreased.interest.in.science_q1:Dialectic_Final1 166.115063209
## Themelearning.from.pandemics_q1:Dialectic_Final1 1.379904772
## Themeliving.in.the.moment_q1:Dialectic_Final1 1.703148892
## Themenature_q1:Dialectic_Final1 1.254457173
## Themeoptimism...positivity_q1:Dialectic_Final1 1.703349013
## Themepersonal.resilience_q1:Dialectic_Final1 1.254497493
## Themepolitical.engagement...structural.change_q1:Dialectic_Final1 1.108656682
## Themeprosocial.behavior_q1:Dialectic_Final1 1.287261747
## Themereconsidering.habits_q1:Dialectic_Final1 1.146170072
## Themeshared.humanity_q1:Dialectic_Final1 1.468339884
## Themesocial.connectedness_q1:Dialectic_Final1 1.107128693
## Themesolidarity_q1:Dialectic_Final1 1.132330375
## Themesympathy...compassion_q1:Dialectic_Final1 1.703175027
## z value
## (Intercept) -3.552
## Themecritical.thinking_q1 -0.582
## Themeembrace.new.tech_q1 0.847
## Themegratitude_q1 0.000
## Themehealth...well.being_q1 0.000
## Themeimproved.care.for.elders_q1 -0.023
## Themeimproved.work.life.balance_q1 0.000
## Themeincreased.interest.in.science_q1 -0.582
## Themelearning.from.pandemics_q1 0.000
## Themeliving.in.the.moment_q1 -0.582
## Themenature_q1 0.465
## Themeoptimism...positivity_q1 -0.582
## Themepersonal.resilience_q1 0.465
## Themepolitical.engagement...structural.change_q1 1.457
## Themeprosocial.behavior_q1 0.847
## Themereconsidering.habits_q1 1.172
## Themeshared.humanity_q1 -0.582
## Themesocial.connectedness_q1 1.172
## Themesolidarity_q1 1.457
## Themesympathy...compassion_q1 -0.582
## Dialectic_Final1 0.891
## Themecritical.thinking_q1:Dialectic_Final1 -0.028
## Themeembrace.new.tech_q1:Dialectic_Final1 -0.432
## Themegratitude_q1:Dialectic_Final1 0.000
## Themehealth...well.being_q1:Dialectic_Final1 -0.560
## Themeimproved.care.for.elders_q1:Dialectic_Final1 0.021
## Themeimproved.work.life.balance_q1:Dialectic_Final1 -0.560
## Themeincreased.interest.in.science_q1:Dialectic_Final1 -0.127
## Themelearning.from.pandemics_q1:Dialectic_Final1 -0.560
## Themeliving.in.the.moment_q1:Dialectic_Final1 -0.455
## Themenature_q1:Dialectic_Final1 -0.615
## Themeoptimism...positivity_q1:Dialectic_Final1 -0.455
## Themepersonal.resilience_q1:Dialectic_Final1 -0.615
## Themepolitical.engagement...structural.change_q1:Dialectic_Final1 -0.510
## Themeprosocial.behavior_q1:Dialectic_Final1 -1.199
## Themereconsidering.habits_q1:Dialectic_Final1 -0.670
## Themeshared.humanity_q1:Dialectic_Final1 0.497
## Themesocial.connectedness_q1:Dialectic_Final1 0.153
## Themesolidarity_q1:Dialectic_Final1 -0.877
## Themesympathy...compassion_q1:Dialectic_Final1 -0.455
## Pr(>|z|)
## (Intercept) 0.000382 ***
## Themecritical.thinking_q1 0.560744
## Themeembrace.new.tech_q1 0.397077
## Themegratitude_q1 0.999983
## Themehealth...well.being_q1 0.999994
## Themeimproved.care.for.elders_q1 0.981861
## Themeimproved.work.life.balance_q1 0.999999
## Themeincreased.interest.in.science_q1 0.560733
## Themelearning.from.pandemics_q1 0.999986
## Themeliving.in.the.moment_q1 0.560709
## Themenature_q1 0.641989
## Themeoptimism...positivity_q1 0.560743
## Themepersonal.resilience_q1 0.642003
## Themepolitical.engagement...structural.change_q1 0.145241
## Themeprosocial.behavior_q1 0.397074
## Themereconsidering.habits_q1 0.241237
## Themeshared.humanity_q1 0.560752
## Themesocial.connectedness_q1 0.241231
## Themesolidarity_q1 0.145249
## Themesympathy...compassion_q1 0.560721
## Dialectic_Final1 0.372986
## Themecritical.thinking_q1:Dialectic_Final1 0.977511
## Themeembrace.new.tech_q1:Dialectic_Final1 0.665602
## Themegratitude_q1:Dialectic_Final1 0.999986
## Themehealth...well.being_q1:Dialectic_Final1 0.575256
## Themeimproved.care.for.elders_q1:Dialectic_Final1 0.983476
## Themeimproved.work.life.balance_q1:Dialectic_Final1 0.575251
## Themeincreased.interest.in.science_q1:Dialectic_Final1 0.899053
## Themelearning.from.pandemics_q1:Dialectic_Final1 0.575272
## Themeliving.in.the.moment_q1:Dialectic_Final1 0.649269
## Themenature_q1:Dialectic_Final1 0.538439
## Themeoptimism...positivity_q1:Dialectic_Final1 0.649322
## Themepersonal.resilience_q1:Dialectic_Final1 0.538461
## Themepolitical.engagement...structural.change_q1:Dialectic_Final1 0.609809
## Themeprosocial.behavior_q1:Dialectic_Final1 0.230567
## Themereconsidering.habits_q1:Dialectic_Final1 0.502609
## Themeshared.humanity_q1:Dialectic_Final1 0.619300
## Themesocial.connectedness_q1:Dialectic_Final1 0.878043
## Themesolidarity_q1:Dialectic_Final1 0.380402
## Themesympathy...compassion_q1:Dialectic_Final1 0.649278
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 12.6160 1 0.0003825 ***
## Theme 19.4040 19 0.4312077
## Dialectic_Final 0.7937 1 0.3729857
## Theme:Dialectic_Final 5.5165 19 0.9988468
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
4.6 MCA
We can address the question of diversity by examining the degree to which scores across themes are reducible to common components. To this end, we perform a series of data reduction analyses. Our chief focus was on Multiple Correspondence Analysis for categorical data.
As a reminder, in qualitative analyses we identified 20 themes. If themes are completely independent and irreducible, each theme would account for 5 % of the variance. In other words, we can use 5% of variance as a cut-off point for a meaningful contribution of each component.
It appears that 7 component is good start to account for 20 themes for Question 1.
Keep in mind that reducing 20 items to 7 components is just a 40% reduction and that’s not much. Moreover, when we reduce the items to 7 components, the first component explains only 11.6 % of the variance. Given that each theme by default explains 5% of the variance (1/20), this is not much.
Furthermore, each of these components is largely based on 1-2 item (when examining squared cosine ≥ .4).
## Shared Humanity Critical Thinking Resilience
## 2 2 2
## Gratitude Nature Care for Elders
## 2 2 2
## Embrace New Tech Prosocial Behavior Social Connectedness
## 2 2 2
## Work-Life Balance Science Interest Learning from Pandemics
## 2 2 2
## Polit./Structure-Change Optimism/Positivity Reconsider Habits
## 2 2 2
## Live\nin the Moment Health/Wellbeing Solidarity
## 2 2 2
## Political Cooperation Sympathy&Compassion
## 2 2
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.115975698 11.5975698 11.59757
## dim 2 0.099563572 9.9563572 21.55393
## dim 3 0.087829757 8.7829757 30.33690
## dim 4 0.080371832 8.0371832 38.37409
## dim 5 0.074830787 7.4830787 45.85716
## dim 6 0.067571370 6.7571370 52.61430
## dim 7 0.064445053 6.4445053 59.05881
## dim 8 0.055650088 5.5650088 64.62382
## dim 9 0.053882097 5.3882097 70.01203
## dim 10 0.050097638 5.0097638 75.02179
## dim 11 0.047902818 4.7902818 79.81207
## dim 12 0.041955387 4.1955387 84.00761
## dim 13 0.035992457 3.5992457 87.60686
## dim 14 0.033362357 3.3362357 90.94309
## dim 15 0.027086622 2.7086622 93.65175
## dim 16 0.020975844 2.0975844 95.74934
## dim 17 0.015600035 1.5600035 97.30934
## dim 18 0.011735758 1.1735758 98.48292
## dim 19 0.008533069 0.8533069 99.33622
## dim 20 0.006637761 0.6637761 100.00000
## Dim 1 Dim 2 Dim 3 Dim 4
## Shared Humanity_0 0.3158923828 0.026733557712 0.154583395 0.0334103488
## Shared Humanity_1 0.3158923828 0.026733557712 0.154583395 0.0334103488
## Critical Thinking_0 0.1214129380 0.087934465749 0.418551470 0.0669920769
## Critical Thinking_1 0.1214129380 0.087934465749 0.418551470 0.0669920769
## Resilience_0 0.0308702758 0.005522534419 0.227526003 0.1187539473
## Resilience_1 0.0308702758 0.005522534419 0.227526003 0.1187539473
## Gratitude_0 0.1155351220 0.000717793040 0.150427231 0.0061566481
## Gratitude_1 0.1155351220 0.000717793040 0.150427231 0.0061566481
## Nature_0 0.0801300385 0.330594215067 0.048789018 0.0217124087
## Nature_1 0.0801300385 0.330594215067 0.048789018 0.0217124087
## Care for Elders_0 0.0205858931 0.000005082731 0.025220178 0.1214004785
## Care for Elders_1 0.0205858931 0.000005082731 0.025220178 0.1214004785
## Embrace New Tech_0 0.2755502635 0.008751490932 0.015484985 0.0022065716
## Embrace New Tech_1 0.2755502635 0.008751490932 0.015484985 0.0022065716
## Prosocial Behavior_0 0.0007074013 0.264352780000 0.059089921 0.3022479772
## Prosocial Behavior_1 0.0007074013 0.264352780000 0.059089921 0.3022479772
## Social Connectedness_0 0.3907253227 0.006290880530 0.003100148 0.0084276404
## Social Connectedness_1 0.3907253227 0.006290880530 0.003100148 0.0084276404
## Work-Life Balance_0 0.0779105380 0.216337713383 0.009641978 0.0210100085
## Work-Life Balance_1 0.0779105380 0.216337713383 0.009641978 0.0210100085
## Science Interest_0 0.0161402749 0.036414712404 0.227113859 0.1224420951
## Science Interest_1 0.0161402749 0.036414712404 0.227113859 0.1224420951
## Learning from Pandemics_0 0.0813255640 0.000608510673 0.003744185 0.0050439281
## Learning from Pandemics_1 0.0813255640 0.000608510673 0.003744185 0.0050439281
## Polit./Structure-Change_0 0.2033118401 0.001084207340 0.066628682 0.2338617052
## Polit./Structure-Change_1 0.2033118401 0.001084207340 0.066628682 0.2338617052
## Optimism/Positivity_0 0.0491176640 0.065826867702 0.172615055 0.0610374955
## Optimism/Positivity_1 0.0491176640 0.065826867702 0.172615055 0.0610374955
## Reconsider Habits_0 0.2420825221 0.000925945071 0.066305692 0.0000622317
## Reconsider Habits_1 0.2420825221 0.000925945071 0.066305692 0.0000622317
## Live\nin the Moment_0 0.0419528927 0.175837862320 0.041744668 0.0230924780
## Live\nin the Moment_1 0.0419528927 0.175837862320 0.041744668 0.0230924780
## Health/Wellbeing_0 0.0083675447 0.341136051666 0.004377414 0.0683462234
## Health/Wellbeing_1 0.0083675447 0.341136051666 0.004377414 0.0683462234
## Solidarity_0 0.0239350838 0.405655157915 0.008261223 0.2783571030
## Solidarity_1 0.0239350838 0.405655157915 0.008261223 0.2783571030
## Political Cooperation_0 0.2076158300 0.016520852758 0.030587627 0.0099033267
## Political Cooperation_1 0.2076158300 0.016520852758 0.030587627 0.0099033267
## Sympathy&Compassion_0 0.0163445686 0.000020758200 0.022802417 0.1029719519
## Sympathy&Compassion_1 0.0163445686 0.000020758200 0.022802417 0.1029719519
## Dim 5
## Shared Humanity_0 0.12222001070
## Shared Humanity_1 0.12222001070
## Critical Thinking_0 0.10630155015
## Critical Thinking_1 0.10630155015
## Resilience_0 0.02724217687
## Resilience_1 0.02724217687
## Gratitude_0 0.02687795483
## Gratitude_1 0.02687795483
## Nature_0 0.00502468133
## Nature_1 0.00502468133
## Care for Elders_0 0.00004210155
## Care for Elders_1 0.00004210155
## Embrace New Tech_0 0.21563880871
## Embrace New Tech_1 0.21563880871
## Prosocial Behavior_0 0.03279037702
## Prosocial Behavior_1 0.03279037702
## Social Connectedness_0 0.08269743838
## Social Connectedness_1 0.08269743838
## Work-Life Balance_0 0.10021578795
## Work-Life Balance_1 0.10021578795
## Science Interest_0 0.21749416146
## Science Interest_1 0.21749416146
## Learning from Pandemics_0 0.01525406001
## Learning from Pandemics_1 0.01525406001
## Polit./Structure-Change_0 0.00618784277
## Polit./Structure-Change_1 0.00618784277
## Optimism/Positivity_0 0.05395137939
## Optimism/Positivity_1 0.05395137939
## Reconsider Habits_0 0.04500634929
## Reconsider Habits_1 0.04500634929
## Live\nin the Moment_0 0.00733712570
## Live\nin the Moment_1 0.00733712570
## Health/Wellbeing_0 0.32210891616
## Health/Wellbeing_1 0.32210891616
## Solidarity_0 0.05707532391
## Solidarity_1 0.05707532391
## Political Cooperation_0 0.05080042155
## Political Cooperation_1 0.05080042155
## Sympathy&Compassion_0 0.00234927836
## Sympathy&Compassion_1 0.00234927836
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Shared Humanity_0 1.19 0.12 0.77 0.18 0.72
## Shared Humanity_1 12.42 1.22 8.03 1.90 7.45
## Critical Thinking_0 0.28 0.23 1.25 0.22 0.37
## Critical Thinking_1 4.96 4.18 22.57 3.95 6.73
## Resilience_0 0.14 0.03 1.36 0.78 0.19
## Resilience_1 1.19 0.25 11.59 6.61 1.63
## Gratitude_0 0.52 0.00 0.90 0.04 0.19
## Gratitude_1 4.46 0.03 7.66 0.34 1.61
## Nature_0 0.36 1.75 0.29 0.14 0.04
## Nature_1 3.09 14.85 2.49 1.21 0.30
## Care for Elders_0 0.02 0.00 0.03 0.13 0.00
## Care for Elders_1 0.87 0.00 1.41 7.42 0.00
## Embrace New Tech_0 1.88 0.07 0.14 0.02 2.28
## Embrace New Tech_1 10.00 0.37 0.74 0.12 12.13
## Prosocial Behavior_0 0.00 1.40 0.35 1.98 0.23
## Prosocial Behavior_1 0.03 11.88 3.01 16.82 1.96
## Social Connectedness_0 4.43 0.08 0.05 0.14 1.45
## Social Connectedness_1 12.41 0.23 0.13 0.39 4.07
## Work-Life Balance_0 0.24 0.76 0.04 0.09 0.47
## Work-Life Balance_1 3.12 10.10 0.51 1.22 6.23
## Science Interest_0 0.01 0.03 0.23 0.13 0.25
## Science Interest_1 0.68 1.80 12.70 7.48 14.28
## Learning from Pandemics_0 0.25 0.00 0.01 0.02 0.07
## Learning from Pandemics_1 3.26 0.03 0.20 0.29 0.95
## Polit./Structure-Change_0 2.00 0.01 0.87 3.32 0.09
## Polit./Structure-Change_1 6.77 0.04 2.93 11.23 0.32
## Optimism/Positivity_0 0.07 0.12 0.34 0.13 0.13
## Optimism/Positivity_1 2.04 3.19 9.48 3.66 3.48
## Reconsider Habits_0 1.83 0.01 0.66 0.00 0.53
## Reconsider Habits_1 8.61 0.04 3.11 0.00 2.48
## Live\nin the Moment_0 0.06 0.31 0.08 0.05 0.02
## Live\nin the Moment_1 1.75 8.52 2.29 1.39 0.47
## Health/Wellbeing_0 0.03 1.20 0.02 0.30 1.51
## Health/Wellbeing_1 0.34 15.93 0.23 3.95 20.01
## Solidarity_0 0.20 3.93 0.09 3.34 0.74
## Solidarity_1 0.83 16.44 0.38 13.97 3.08
## Political Cooperation_0 0.94 0.09 0.18 0.06 0.36
## Political Cooperation_1 8.01 0.74 1.56 0.55 3.04
## Sympathy&Compassion_0 0.02 0.00 0.05 0.22 0.01
## Sympathy&Compassion_1 0.68 0.00 1.25 6.18 0.15
In short, MCA analyses (note: close to identical results with minres factor analyses with tetriconic correlation) show substantial diversity, with the top dimensions not accounting for more than 12% of the variance. And even with 7 components, we don’t account for 60% of the variance.
4.7 Network Graph
As we can see above, even after removing negligible correlations (r < .17), cluster analyses on top of the network graphs show seven clusters - psych. well-being, civic (poli.structural change, care for elders), solidarity, critical reflection and social connectedness (social connectedness, change in habits, critical thinking), and adaptive mindsets (shared humanity, focus on nature, optimism/positivity, resilience). Again, this suggests a diversity of topics. Despite forming meaningful dependencies, themes for positive consequences of the pandemic appear largely distinct, except for link between social connectedness and gratitude, linking two networks.
4.8 Convergence vs. divergence of themes over time
I started to interview people in late June, 2020, in the weeks following the BLM protests and riots following George Floyd’s death. Over the course of the summer and the fall, numerous other events occurred, including relaxing and re-introducing lockdown policies and regulations in different parts of the world, start of in-person schooling in the fall, the US Presidential election, and its aftermath.
One way to address the diversity and uncertainty of scientific perspectives on World after Covid and wisdom needed is to examine how consistently themes were mentioned over time. In what follows I do this separately for each question.
First, I bin frequencies of themes by month. Because only two people provided their interviews in early December, 2020, these individuals will be binned with November scores, such that the scores range from 17 (June), and 19 (July), to six (November).
## # A tibble: 6 x 2
## # Groups: month [6]
## month n
## <dbl> <int>
## 1 6 17
## 2 7 19
## 3 9 7
## 4 10 8
## 5 11 4
## 6 12 2
## # A tibble: 41 x 2
## # Groups: date [41]
## date n
## <dttm> <int>
## 1 2020-06-17 00:00:00 1
## 2 2020-06-18 00:00:00 4
## 3 2020-06-19 00:00:00 2
## 4 2020-06-20 00:00:00 1
## 5 2020-06-22 00:00:00 1
## 6 2020-06-23 00:00:00 1
## 7 2020-06-25 00:00:00 2
## 8 2020-06-26 00:00:00 3
## 9 2020-06-28 00:00:00 1
## 10 2020-06-29 00:00:00 1
## # ... with 31 more rows
##
## 1. June 2. July 3. Sept/early Oct 4. late Oct+
## 17 19 7 14
Focus on social issues declines in frequency being mentioned after June/July, whereas focus on prosociality (social connectedness/solidarity) increases, emerging as dominant in late October right around the time of US election.
Quest for knowledge (i.e., appreciation of science and willingness to learn from the pandemic) was chiefly mentioned early on, but re-emerged again in late November (after BioNtech vaccine was announced to be possibly 90% effective - Nov 9, 2020).
Other themes remain largely identical in frequency of being mentioned over time.
It is also interesting to see how ranking of categories changes over time. Prosocial themes are top at the beginning and esp. in the second wave of the pandemic. Societal issues is close second at the beginning, but move to close to last at the end.
Psych. Wellbeing emerges as the lead in the summer but becomes relatively less pronounced in late Oct/Nov.
Though speculative and post-hoc, this observation suggests that for some of the major themes (incl the most frequently mentioned onces), salience of present-day events inform the themes scientists mentioned in their reflections concerning positive consequences -several years- following the pandemic!
5 Negative Consequences
5.1 Summary
5.1.1 A great degree of variability in themes (again)
We identified 22 distinct themes.
More than half of themes mentioned by less than 10% of the interviewees.
Only two themes were mentioned by at least ten people: political conflict and prejudice and racism.
Generally:
* Political conflict, prejudice/racism, mistrust, social inequality are among the top negative consequences predicted.
* Consequences are either social or societal/ with health/well-being being mentioned relatively less.
* Women more likely to focus on well-being-risks, incl. loneliness and estrangement/alienation, as well as economic hardships. Men more likely to consider prejudice, erosion of democracy.
5.2 Frequency Chart
5.3 How many themes per person?
Did people just report 1-2 themes or a great number of themes? How do such trends vary across people?
It turns out most people mentioned just one or two (median) negative consequences. Two people mentioned up 5 and 7 themes, respectively.
5.4 Frequency Chart by Gender and Field
It is possible that socio-cultural experts focus more on social-structural issues than mental health and other possible domains of change because of idiosyncratic preferences.
As the distribution of themes by field of expertise indicates, this is not likely to be the reason for mentioning political and interpersonal issues most (relative to mental health), with roughly similar distributions. The only exception is that sociocultural experts tended to emphasize mistrust, whereas non-SC experts emphasized irrationality/mispercetion of the world more.
5.5 Frequencies by Cognitive Style: Dialectical Thinking and Consideration of Outsider Viewpoint
It appears that people invoking dialecticism in their reasoning were more likely to focus on negative consequences (incl. socio-economic inequality, prejudice/racism, political conflict, authoritarianism) as well as low trust in science in their negative forecasts as those who did not show dialecticism.
It is hard to tell how similar experts invoking baserate/outsider view information were in their reasoning compared to experts who did not mention baserate info. There are some differences, but they may be due to differences in sub-sample size.
Key differences that stand out are:
- greater focus on low wellbeing, low trust in science, and estrangement/alienation among baseraters and greater focus on interpersinal mustruct among non-baseraters.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * Dialectic_Final + (1 | Name)
## Data: Q3.data.Dia.long
##
## AIC BIC logLik deviance df.resid
## 814.8 1043.4 -362.4 724.8 1143
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6489 -0.3536 -0.2828 -0.1961 5.0990
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.000000000444 0.00002107
## Number of obs: 1188, groups: Name, 54
##
## Fixed effects:
## Estimate
## (Intercept) -2.52575906
## Themeautobiographical.memory_q3 -0.73233065
## Themecareer.disruptions_q3 0.00002728
## Themedecline.in.quality.of.education_q3 0.00004189
## Themedecreased.trust.in.science_q3 -0.73232585
## Themedecreased.well.being_q3 1.04416138
## Themedespair_q3 -0.73233862
## Themeeconomic.hardship_q3 0.77656242
## Themeeducational.inequality_q3 0.00002090
## Themeerosion.of.democratic.institutions_q3 1.04415450
## Themeestrangement...alienation_q3 0.77656335
## Themeexacerbated.social.inequality_q3 0.44631740
## Themeintimate.relations_q3 -0.73234754
## Themeirrationality_q3 -0.73233029
## Themeloneliness_q3 0.44631979
## Thememisperception.about.the.world_q3 0.77656073
## Thememistrust_q3 1.04415911
## Themepessimism_q3 -0.73231983
## Themepolitical.conflict_q3 0.44631450
## Themeprejudice...racism_q3 0.44630809
## Themeprioritize.self.over.others_q3 -16.94517365
## Themestunted.child.development_q3 0.44631805
## Dialectic_Final1 1.04416236
## Themeautobiographical.memory_q3:Dialectic_Final1 -20.83827700
## Themecareer.disruptions_q3:Dialectic_Final1 -1.04415760
## Themedecline.in.quality.of.education_q3:Dialectic_Final1 -1.77655042
## Themedecreased.trust.in.science_q3:Dialectic_Final1 0.73231318
## Themedecreased.well.being_q3:Dialectic_Final1 -1.64200944
## Themedespair_q3:Dialectic_Final1 -0.31179205
## Themeeconomic.hardship_q3:Dialectic_Final1 -1.37441290
## Themeeducational.inequality_q3:Dialectic_Final1 -0.59786414
## Themeerosion.of.democratic.institutions_q3:Dialectic_Final1 -1.64199716
## Themeestrangement...alienation_q3:Dialectic_Final1 -1.37441300
## Themeexacerbated.social.inequality_q3:Dialectic_Final1 -0.21748599
## Themeintimate.relations_q3:Dialectic_Final1 -1.04415082
## Themeirrationality_q3:Dialectic_Final1 -0.31180565
## Themeloneliness_q3:Dialectic_Final1 -1.49045240
## Thememisperception.about.the.world_q3:Dialectic_Final1 -2.55305223
## Thememistrust_q3:Dialectic_Final1 -1.31175984
## Themepessimism_q3:Dialectic_Final1 -0.31181856
## Themepolitical.conflict_q3:Dialectic_Final1 0.17028749
## Themeprejudice...racism_q3:Dialectic_Final1 -0.01453243
## Themeprioritize.self.over.others_q3:Dialectic_Final1 16.34732840
## Themestunted.child.development_q3:Dialectic_Final1 -22.11733833
## Std. Error
## (Intercept) 0.73485644
## Themeautobiographical.memory_q3 1.25637135
## Themecareer.disruptions_q3 1.03923791
## Themedecline.in.quality.of.education_q3 1.03923468
## Themedecreased.trust.in.science_q3 1.25636951
## Themedecreased.well.being_q3 0.88626603
## Themedespair_q3 1.25637440
## Themeeconomic.hardship_q3 0.91295761
## Themeeducational.inequality_q3 1.03923932
## Themeerosion.of.democratic.institutions_q3 0.88626663
## Themeestrangement...alienation_q3 0.91295750
## Themeexacerbated.social.inequality_q3 0.95656366
## Themeintimate.relations_q3 1.25637781
## Themeirrationality_q3 1.25637121
## Themeloneliness_q3 0.95656329
## Thememisperception.about.the.world_q3 0.91295780
## Thememistrust_q3 0.88626623
## Themepessimism_q3 1.25636721
## Themepolitical.conflict_q3 0.95656410
## Themeprejudice...racism_q3 0.95656508
## Themeprioritize.self.over.others_q3 3253.69956496
## Themestunted.child.development_q3 0.95656356
## Dialectic_Final1 0.88626595
## Themeautobiographical.memory_q3:Dialectic_Final1 19500.27305331
## Themecareer.disruptions_q3:Dialectic_Final1 1.36582137
## Themedecline.in.quality.of.education_q3:Dialectic_Final1 1.53750836
## Themedecreased.trust.in.science_q3:Dialectic_Final1 1.43853153
## Themedecreased.well.being_q3:Dialectic_Final1 1.18571571
## Themedespair_q3:Dialectic_Final1 1.53750752
## Themeeconomic.hardship_q3:Dialectic_Final1 1.20579707
## Themeeducational.inequality_q3:Dialectic_Final1 1.30402118
## Themeerosion.of.democratic.institutions_q3:Dialectic_Final1 1.18571550
## Themeestrangement...alienation_q3:Dialectic_Final1 1.20579689
## Themeexacerbated.social.inequality_q3:Dialectic_Final1 1.17249876
## Themeintimate.relations_q3:Dialectic_Final1 1.69186248
## Themeirrationality_q3:Dialectic_Final1 1.53750571
## Themeloneliness_q3:Dialectic_Final1 1.30401954
## Thememisperception.about.the.world_q3:Dialectic_Final1 1.45512844
## Thememistrust_q3:Dialectic_Final1 1.15082532
## Themepessimism_q3:Dialectic_Final1 1.53750280
## Themepolitical.conflict_q3:Dialectic_Final1 1.15676255
## Themeprejudice...racism_q3:Dialectic_Final1 1.16332589
## Themeprioritize.self.over.others_q3:Dialectic_Final1 3253.69966030
## Themestunted.child.development_q3:Dialectic_Final1 20504.30334929
## z value Pr(>|z|)
## (Intercept) -3.437 0.000588
## Themeautobiographical.memory_q3 -0.583 0.559965
## Themecareer.disruptions_q3 0.000 0.999979
## Themedecline.in.quality.of.education_q3 0.000 0.999968
## Themedecreased.trust.in.science_q3 -0.583 0.559967
## Themedecreased.well.being_q3 1.178 0.238734
## Themedespair_q3 -0.583 0.559962
## Themeeconomic.hardship_q3 0.851 0.394991
## Themeeducational.inequality_q3 0.000 0.999984
## Themeerosion.of.democratic.institutions_q3 1.178 0.238737
## Themeestrangement...alienation_q3 0.851 0.394991
## Themeexacerbated.social.inequality_q3 0.467 0.640797
## Themeintimate.relations_q3 -0.583 0.559958
## Themeirrationality_q3 -0.583 0.559965
## Themeloneliness_q3 0.467 0.640796
## Thememisperception.about.the.world_q3 0.851 0.394992
## Thememistrust_q3 1.178 0.238735
## Themepessimism_q3 -0.583 0.559970
## Themepolitical.conflict_q3 0.467 0.640800
## Themeprejudice...racism_q3 0.467 0.640805
## Themeprioritize.self.over.others_q3 -0.005 0.995845
## Themestunted.child.development_q3 0.467 0.640797
## Dialectic_Final1 1.178 0.238733
## Themeautobiographical.memory_q3:Dialectic_Final1 -0.001 0.999147
## Themecareer.disruptions_q3:Dialectic_Final1 -0.764 0.444575
## Themedecline.in.quality.of.education_q3:Dialectic_Final1 -1.155 0.247897
## Themedecreased.trust.in.science_q3:Dialectic_Final1 0.509 0.610703
## Themedecreased.well.being_q3:Dialectic_Final1 -1.385 0.166106
## Themedespair_q3:Dialectic_Final1 -0.203 0.839299
## Themeeconomic.hardship_q3:Dialectic_Final1 -1.140 0.254354
## Themeeducational.inequality_q3:Dialectic_Final1 -0.458 0.646610
## Themeerosion.of.democratic.institutions_q3:Dialectic_Final1 -1.385 0.166109
## Themeestrangement...alienation_q3:Dialectic_Final1 -1.140 0.254354
## Themeexacerbated.social.inequality_q3:Dialectic_Final1 -0.185 0.852845
## Themeintimate.relations_q3:Dialectic_Final1 -0.617 0.537129
## Themeirrationality_q3:Dialectic_Final1 -0.203 0.839292
## Themeloneliness_q3:Dialectic_Final1 -1.143 0.253052
## Thememisperception.about.the.world_q3:Dialectic_Final1 -1.755 0.079341
## Thememistrust_q3:Dialectic_Final1 -1.140 0.254352
## Themepessimism_q3:Dialectic_Final1 -0.203 0.839285
## Themepolitical.conflict_q3:Dialectic_Final1 0.147 0.882966
## Themeprejudice...racism_q3:Dialectic_Final1 -0.012 0.990033
## Themeprioritize.self.over.others_q3:Dialectic_Final1 0.005 0.995991
## Themestunted.child.development_q3:Dialectic_Final1 -0.001 0.999139
##
## (Intercept) ***
## Themeautobiographical.memory_q3
## Themecareer.disruptions_q3
## Themedecline.in.quality.of.education_q3
## Themedecreased.trust.in.science_q3
## Themedecreased.well.being_q3
## Themedespair_q3
## Themeeconomic.hardship_q3
## Themeeducational.inequality_q3
## Themeerosion.of.democratic.institutions_q3
## Themeestrangement...alienation_q3
## Themeexacerbated.social.inequality_q3
## Themeintimate.relations_q3
## Themeirrationality_q3
## Themeloneliness_q3
## Thememisperception.about.the.world_q3
## Thememistrust_q3
## Themepessimism_q3
## Themepolitical.conflict_q3
## Themeprejudice...racism_q3
## Themeprioritize.self.over.others_q3
## Themestunted.child.development_q3
## Dialectic_Final1
## Themeautobiographical.memory_q3:Dialectic_Final1
## Themecareer.disruptions_q3:Dialectic_Final1
## Themedecline.in.quality.of.education_q3:Dialectic_Final1
## Themedecreased.trust.in.science_q3:Dialectic_Final1
## Themedecreased.well.being_q3:Dialectic_Final1
## Themedespair_q3:Dialectic_Final1
## Themeeconomic.hardship_q3:Dialectic_Final1
## Themeeducational.inequality_q3:Dialectic_Final1
## Themeerosion.of.democratic.institutions_q3:Dialectic_Final1
## Themeestrangement...alienation_q3:Dialectic_Final1
## Themeexacerbated.social.inequality_q3:Dialectic_Final1
## Themeintimate.relations_q3:Dialectic_Final1
## Themeirrationality_q3:Dialectic_Final1
## Themeloneliness_q3:Dialectic_Final1
## Thememisperception.about.the.world_q3:Dialectic_Final1 .
## Thememistrust_q3:Dialectic_Final1
## Themepessimism_q3:Dialectic_Final1
## Themepolitical.conflict_q3:Dialectic_Final1
## Themeprejudice...racism_q3:Dialectic_Final1
## Themeprioritize.self.over.others_q3:Dialectic_Final1
## Themestunted.child.development_q3:Dialectic_Final1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 11.8135 1 0.000588 ***
## Theme 14.9787 21 0.824018
## Dialectic_Final 1.3881 1 0.238733
## Theme:Dialectic_Final 13.7434 21 0.880369
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
5.6 MCA
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.120 12.025 12.025
## dim 2 0.098 9.844 21.870
## dim 3 0.092 9.217 31.087
## dim 4 0.081 8.143 39.230
## dim 5 0.071 7.079 46.308
## dim 6 0.065 6.487 52.796
## dim 7 0.056 5.592 58.388
## dim 8 0.053 5.262 63.650
## dim 9 0.052 5.194 68.843
## dim 10 0.046 4.640 73.483
## dim 11 0.045 4.473 77.956
## dim 12 0.035 3.465 81.420
## dim 13 0.034 3.423 84.843
## dim 14 0.026 2.643 87.486
## dim 15 0.026 2.622 90.108
## dim 16 0.020 2.003 92.111
## dim 17 0.019 1.909 94.021
## dim 18 0.016 1.612 95.632
## dim 19 0.014 1.399 97.031
## dim 20 0.013 1.253 98.284
## dim 21 0.010 0.968 99.252
## dim 22 0.007 0.748 100.000
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Estrangement Alienation_0 0.068 0.005 0.476 0.072 0.015
## Estrangement Alienation_1 0.068 0.005 0.476 0.072 0.015
## Career Disruptions_0 0.000 0.426 0.014 0.060 0.070
## Career Disruptions_1 0.000 0.426 0.014 0.060 0.070
## Low Qual. Education_0 0.379 0.017 0.235 0.072 0.005
## Low Qual. Education_1 0.379 0.017 0.235 0.072 0.005
## Low Trust in Science_0 0.271 0.025 0.063 0.110 0.019
## Low Trust in Science_1 0.271 0.025 0.063 0.110 0.019
## Low Wellbeing_0 0.002 0.037 0.216 0.022 0.286
## Low Wellbeing_1 0.002 0.037 0.216 0.022 0.286
## Economic Hardship_0 0.000 0.589 0.001 0.010 0.142
## Economic Hardship_1 0.000 0.589 0.001 0.010 0.142
## Educational Inequality_0 0.178 0.002 0.104 0.242 0.044
## Educational Inequality_1 0.178 0.002 0.104 0.242 0.044
## Erosion of Democratic Instit._0 0.101 0.043 0.040 0.017 0.124
## Erosion of Democratic Instit._1 0.101 0.043 0.040 0.017 0.124
## Social Inequality_0 0.003 0.018 0.000 0.470 0.006
## Social Inequality_1 0.003 0.018 0.000 0.470 0.006
## Mistrust_0 0.010 0.081 0.014 0.011 0.153
## Mistrust_1 0.010 0.081 0.014 0.011 0.153
## Prejudice Racism_0 0.070 0.181 0.020 0.055 0.013
## Prejudice Racism_1 0.070 0.181 0.020 0.055 0.013
## Despair_0 0.056 0.381 0.020 0.060 0.011
## Despair_1 0.056 0.381 0.020 0.060 0.011
## Self-Centeredness_0 0.058 0.046 0.004 0.026 0.072
## Self-Centeredness_1 0.058 0.046 0.004 0.026 0.072
## Irrationality_0 0.066 0.056 0.007 0.006 0.034
## Irrationality_1 0.066 0.056 0.007 0.006 0.034
## Loneliness_0 0.230 0.000 0.101 0.229 0.036
## Loneliness_1 0.230 0.000 0.101 0.229 0.036
## Misperception of the World_0 0.124 0.111 0.009 0.020 0.139
## Misperception of the World_1 0.124 0.111 0.009 0.020 0.139
## Political Conflict_0 0.247 0.006 0.072 0.051 0.005
## Political Conflict_1 0.247 0.006 0.072 0.051 0.005
## Authoritarianism_0 0.006 0.034 0.195 0.012 0.150
## Authoritarianism_1 0.006 0.034 0.195 0.012 0.150
## Stunted Child\nDevelopment_0 0.445 0.015 0.290 0.030 0.014
## Stunted Child\nDevelopment_1 0.445 0.015 0.290 0.030 0.014
## Pessimism_0 0.113 0.089 0.028 0.055 0.033
## Pessimism_1 0.113 0.089 0.028 0.055 0.033
## Intimate Relations_0 0.220 0.002 0.053 0.160 0.106
## Intimate Relations_1 0.220 0.002 0.053 0.160 0.106
## Autobiographical Memory_0 0.001 0.001 0.067 0.000 0.082
## Autobiographical Memory_1 0.001 0.001 0.067 0.000 0.082
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Estrangement Alienation_0 0.331 0.030 3.041 0.521 0.126
## Estrangement Alienation_1 2.221 0.199 20.415 3.501 0.848
## Career Disruptions_0 0.001 1.457 0.052 0.249 0.333
## Career Disruptions_1 0.007 18.208 0.647 3.107 4.161
## Low Qual. Education_0 0.796 0.043 0.644 0.223 0.017
## Low Qual. Education_1 13.534 0.727 10.953 3.791 0.293
## Low Trust in Science_0 1.138 0.127 0.345 0.684 0.133
## Low Trust in Science_1 9.102 1.013 2.760 5.476 1.063
## Low Wellbeing_0 0.010 0.253 1.581 0.184 2.719
## Low Wellbeing_1 0.060 1.455 9.090 1.057 15.634
## Economic Hardship_0 0.000 3.527 0.009 0.073 1.180
## Economic Hardship_1 0.001 23.681 0.058 0.491 7.924
## Educational Inequality_0 0.622 0.010 0.476 1.250 0.263
## Educational Inequality_1 6.094 0.095 4.666 12.252 2.575
## Erosion of Democratic Instit._0 0.566 0.293 0.290 0.141 1.177
## Erosion of Democratic Instit._1 3.256 1.682 1.669 0.813 6.770
## Social Inequality_0 0.016 0.141 0.000 4.369 0.062
## Social Inequality_1 0.081 0.705 0.000 21.846 0.308
## Mistrust_0 0.062 0.626 0.112 0.106 1.642
## Mistrust_1 0.310 3.130 0.560 0.529 8.209
## Prejudice Racism_0 0.488 1.547 0.179 0.565 0.153
## Prejudice Racism_1 2.148 6.805 0.788 2.488 0.672
## Despair_0 0.117 0.976 0.054 0.187 0.038
## Despair_1 1.997 16.599 0.919 3.172 0.653
## Self-Centeredness_0 0.121 0.118 0.010 0.082 0.258
## Self-Centeredness_1 2.059 2.008 0.165 1.390 4.393
## Irrationality_0 0.139 0.145 0.018 0.017 0.121
## Irrationality_1 2.367 2.461 0.304 0.293 2.053
## Loneliness_0 0.805 0.000 0.460 1.184 0.213
## Loneliness_1 7.886 0.002 4.510 11.603 2.083
## Misperception of the World_0 0.433 0.475 0.043 0.104 0.825
## Misperception of the World_1 4.247 4.653 0.421 1.018 8.087
## Political Conflict_0 1.904 0.060 0.726 0.583 0.064
## Political Conflict_1 7.444 0.234 2.838 2.278 0.250
## Authoritarianism_0 0.028 0.205 1.249 0.089 1.249
## Authoritarianism_1 0.185 1.378 8.385 0.600 8.387
## Stunted Child\nDevelopment_0 0.934 0.038 0.795 0.093 0.050
## Stunted Child\nDevelopment_1 15.882 0.646 13.516 1.574 0.848
## Pessimism_0 0.237 0.228 0.077 0.170 0.117
## Pessimism_1 4.026 3.869 1.305 2.888 1.991
## Intimate Relations_0 0.308 0.004 0.096 0.332 0.252
## Intimate Relations_1 8.007 0.109 2.497 8.627 6.564
## Autobiographical Memory_0 0.001 0.001 0.061 0.000 0.097
## Autobiographical Memory_1 0.029 0.039 3.219 0.001 5.143
Similar to positive consequences, we can address the question of diversity by examining the degree to which scores across themes are reducible to common dimensions via MCA).
With 22 themes, just by chance one would expect a component to account for at least 4.6% of variance. Nine dimensions are above this cut off point. This said, the scree plot line is pretty flat after the first component, and eeven the first one only accounts for 12% and nine components account for 68% of variance.
Given that each theme by default explains 4.6% of the variance (1/22), this is not much.
Furthermore, each of these components is largely based on 1-2 items (cos2 > .3.9)
In short, MCA analysis shows substantial diversity, with the top dimensions concerning stunted child development and career disruptions/economic hardships not accounting for more than 22% of the variance
5.7 Network Graph
As we can see above, even after removing negligible correlations (r < .17), cluster analyses on top of the network graphs show 5 groups concerning irrational dystopia (e.g., irrationality & misperception of the world, prejudice, & authoritarianism), ill-being, inequality and family strains, economic hardships, and mistrust.
Again, only three themes showed connections across groups: loneliness and estrangement/alienation, intimate relations and economic hardships, and pessimism and despair.
5.8 Convergence vs. divergence of themes over time
As a reminder: I started to interview people in late June, 2020, in the weeks following the BLM protests and riots following George Floyd’s death. Over the course of the summer and the fall, numerous other events occurred, including relaxing and re-introducing lockdown policies and regulations in different parts of the world, start of in-person schooling in the fall, the US Presidential election, and its aftermath.
Once again, we binned scores in the the same four groups as above: June, July, Sept/early Oct, and second part of Oct-early Dec.
Focus on societal issues consistently remains the most frequent topic over time.
Whereas discussion of health and well-being was the second most frequent category mentioned for negative consequences in June, it become third/forth frequent from July on.
In exchange, irrationality started to increase in frequency being mentioned in the fall, closer to the US Election and second lockdowns.
Least frequently mentioned were concerns about work.
Like for positive consequences, one can post-hoc speculate that some of the major themes such as well-being related concerns (e.g., loneliness, well-being decline), and forecasts of irrationality (incl. mispeception of the world, mistrust in science) were likely impacted by societal events unfolding around the time people were making forecasts.
Notably, one theme remained pretty stable over time, with negative societal consequences (political conflict, prejudice and racism, societal inequality) - the most frequently mentioned topic in response to this question - remained consistently most frequent over time.
6 Comparison of Positive and Negative Consequences Side by Side
7 Change in Top Consequences over Time
We examined whether top positive and negative categorized changed over the course of the pandemic. To this end, we focused on the most frequent six themes mentioned across positive and negative forecasts.
Experts were more likely to predict greater will for political and structural societal change, as well as greater prejudice and racism after George Floyd death and anti-police brutality protests in early summer. When approaching new lockdowns in the fall of 2020, topics such as social inequality became more dominant in expert reflections. And in the week preceding and following the highly polarized 2020 US Presidential election in early November, solidarity and political conflict entered the centerstage. Because experts were explicitly instructed to provide forecasts for the timeframe of several years after the pandemic, the event-contingent fluctuation in forecast could reflect focalism in expert predictions (Wilson, Wheatly, Meyers, Gilbert, & Axsom, 2000) or Bayesian information updating based on pressing societal events of the moment. Regardless of possible reasons, the cross-temporal variability in forecasts emphasizes cross-temporal uncertainty in expert predictions.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 1.1242 1 0.289026
## week 3.0646 1 0.080014 .
## Theme 9.7110 2 0.007785 **
## week:Theme 9.6269 2 0.008120 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 4.8791 1 0.02718 *
## week 2.0449 1 0.15272
## Theme 3.7173 2 0.15589
## week:Theme 3.7124 2 0.15626
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## contrast estimate SE df z.ratio
## (Polit.\nStructure-Change) - Social\nConnectedness -0.0615 0.0695 Inf -0.885
## (Polit.\nStructure-Change) - Solidarity -0.2056 0.0712 Inf -2.888
## Social\nConnectedness - Solidarity -0.1441 0.0617 Inf -2.336
## p.value
## 0.6498
## 0.0108
## 0.0509
##
## P value adjustment: tukey method for comparing a family of 3 estimates
## contrast estimate SE df z.ratio p.value
## Political Conflict - Prejudice Racism 0.1318 0.0719 Inf 1.833 0.1588
## Political Conflict - Social Inequality 0.0146 0.0635 Inf 0.231 0.9711
## Prejudice Racism - Social Inequality -0.1171 0.0733 Inf -1.599 0.2461
##
## P value adjustment: tukey method for comparing a family of 3 estimates
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 2.0712 1 0.15011
## week 2.7699 1 0.09605 .
## Theme 4.0896 2 0.12941
## Location 1.0633 1 0.30246
## week:Theme 3.4329 2 0.17970
## week:Location 0.6430 1 0.42264
## Theme:Location 1.3210 2 0.51659
## week:Theme:Location 1.1027 2 0.57618
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 0.9291 1 0.3351
## week 0.1320 1 0.7164
## Theme 0.1689 2 0.9190
## Location 0.0515 1 0.8205
## week:Theme 0.2984 2 0.8614
## week:Location 0.1878 1 0.6648
## Theme:Location 1.4285 2 0.4896
## week:Theme:Location 1.8533 2 0.3959
8 Wisdom for Positive Consequences
8.1 Summary
We identified 21 distinct categories. Most themes mentioned by less than 10% of the interviewees.
Only one theme was mentioned by at least ten people: Need for solidarity.
Most common wisdom-related strategies to sustain positive changes (7+ ppl) concern solidarity, willingness to engage in political and structure change, perspective-taking, and critical thinking.
8.2 Frequency Chart
8.3 How many themes per person?
Did people just report 1-2 themes or a great number of themes? How do such trends vary across people?
It turns out most people mentioned just one or two (median) negative consequences. Two people mentioned up to 4 and 5 themes, respectively.
8.4 Frequencies by Gender and Field
It is not surprising that wisdom experts would mention meta-cognitive and moral considerations. The question is whether scientists without much familiarity with the science of wisdom would mention similar constructs. It appears that is the case, with non-wisdom experts emphasizing such meta-cognitive categories as critical thinking, intellectual humility, acknowledgment of uncertainty, sympathy and compassion and perspective-taking, along with moral aspirations about solidarity, social support, and paying greater attention to one’s family and relationships, and promoting societal change toward fair and just society.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * FamiliarWisdom + (1 | Name)
## Data: Q2.data.Famil.long
##
## AIC BIC logLik deviance df.resid
## 677.7 895.7 -295.9 591.7 1133
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6325 -0.3244 -0.2773 -0.1562 6.4032
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.0000000002432 0.0000156
## Number of obs: 1176, groups: Name, 56
##
## Fixed effects:
## Estimate
## (Intercept) -2.25127303
## Themebalance.of.personal...others.interest_q2 -1.46231014
## Themebipartisanship.and.international.cooperation_q2 -0.00001697
## Themecritical.thinking_q2 0.64183088
## Themeembrace.new.tech_q2 -0.74445117
## Themeevidence.based.decision.making_q2 -18.22524083
## Themeimprove.communication_q2 -0.00002363
## Themeimproved.work.life.balance_q2 -0.74446748
## Themeintellectual.humility_q2 0.24978702
## Themelearning.from.pandemics_q2 0.45951281
## Themeliving.in.the.moment_q2 -0.74446322
## Themepersonal.resilience_q2 -1.46230130
## Themeperspective.taking_q2 -0.31367218
## Themepolitical.engagement...structural.change_q2 0.64183913
## Themeself.distancing_q2 -0.74446904
## Themeself.reflection.on.what.s.important_q2 -0.31368196
## Themeshared.humanity_q2 -1.46227796
## Themesocial.connectedness_q2 -0.31368561
## Themesocial.support_q2 -0.31368043
## Themesolidarity_q2 0.64183988
## Themesympathy...compassion_q2 -0.31367976
## FamiliarWisdomYes -0.31361043
## Themebalance.of.personal...others.interest_q2:FamiliarWisdomYes 1.46224606
## Themebipartisanship.and.international.cooperation_q2:FamiliarWisdomYes 0.77313182
## Themecritical.thinking_q2:FamiliarWisdomYes -21.28513382
## Themeembrace.new.tech_q2:FamiliarWisdomYes -19.67444653
## Themeevidence.based.decision.making_q2:FamiliarWisdomYes 18.22517224
## Themeimprove.communication_q2:FamiliarWisdomYes -21.06651396
## Themeimproved.work.life.balance_q2:FamiliarWisdomYes -20.16998784
## Themeintellectual.humility_q2:FamiliarWisdomYes -21.82680332
## Themelearning.from.pandemics_q2:FamiliarWisdomYes -21.83063935
## Themeliving.in.the.moment_q2:FamiliarWisdomYes -20.36219545
## Themepersonal.resilience_q2:FamiliarWisdomYes -19.94239461
## Themeperspective.taking_q2:FamiliarWisdomYes 1.96225869
## Themepolitical.engagement...structural.change_q2:FamiliarWisdomYes -0.64190438
## Themeself.distancing_q2:FamiliarWisdomYes 2.39305563
## Themeself.reflection.on.what.s.important_q2:FamiliarWisdomYes 1.08680548
## Themeshared.humanity_q2:FamiliarWisdomYes 2.23539163
## Themesocial.connectedness_q2:FamiliarWisdomYes 0.31361040
## Themesocial.support_q2:FamiliarWisdomYes -21.51375998
## Themesolidarity_q2:FamiliarWisdomYes 0.62375804
## Themesympathy...compassion_q2:FamiliarWisdomYes 1.57928362
## Std. Error
## (Intercept) 0.52565349
## Themebalance.of.personal...others.interest_q2 1.14048791
## Themebipartisanship.and.international.cooperation_q2 0.74338885
## Themecritical.thinking_q2 0.66913425
## Themeembrace.new.tech_q2 0.89515795
## Themeevidence.based.decision.making_q2 4313.14287826
## Themeimprove.communication_q2 0.74338985
## Themeimproved.work.life.balance_q2 0.89516228
## Themeintellectual.humility_q2 0.70946435
## Themelearning.from.pandemics_q2 0.68611671
## Themeliving.in.the.moment_q2 0.89516115
## Themepersonal.resilience_q2 1.14048413
## Themeperspective.taking_q2 0.79704747
## Themepolitical.engagement...structural.change_q2 0.66913355
## Themeself.distancing_q2 0.89516269
## Themeself.reflection.on.what.s.important_q2 0.79704936
## Themeshared.humanity_q2 1.14047415
## Themesocial.connectedness_q2 0.79705007
## Themesocial.support_q2 0.79704907
## Themesolidarity_q2 0.66913348
## Themesympathy...compassion_q2 0.79704894
## FamiliarWisdomYes 1.16326001
## Themebalance.of.personal...others.interest_q2:FamiliarWisdomYes 1.85862753
## Themebipartisanship.and.international.cooperation_q2:FamiliarWisdomYes 1.48755718
## Themecritical.thinking_q2:FamiliarWisdomYes 29277.20586318
## Themeembrace.new.tech_q2:FamiliarWisdomYes 26169.81476183
## Themeevidence.based.decision.making_q2:FamiliarWisdomYes 4313.14312793
## Themeimprove.communication_q2:FamiliarWisdomYes 36177.10939306
## Themeimproved.work.life.balance_q2:FamiliarWisdomYes 33528.15211222
## Themeintellectual.humility_q2:FamiliarWisdomYes 46696.34684800
## Themelearning.from.pandemics_q2:FamiliarWisdomYes 42128.35624197
## Themeliving.in.the.moment_q2:FamiliarWisdomYes 36910.16998969
## Themepersonal.resilience_q2:FamiliarWisdomYes 42841.43513737
## Themeperspective.taking_q2:FamiliarWisdomYes 1.43601805
## Themepolitical.engagement...structural.change_q2:FamiliarWisdomYes 1.61292419
## Themeself.distancing_q2:FamiliarWisdomYes 1.49270875
## Themeself.reflection.on.what.s.important_q2:FamiliarWisdomYes 1.51508530
## Themeshared.humanity_q2:FamiliarWisdomYes 1.72072112
## Themesocial.connectedness_q2:FamiliarWisdomYes 1.67005471
## Themesocial.support_q2:FamiliarWisdomYes 52925.11508959
## Themesolidarity_q2:FamiliarWisdomYes 1.39601036
## Themesympathy...compassion_q2:FamiliarWisdomYes 1.46163978
## z value
## (Intercept) -4.283
## Themebalance.of.personal...others.interest_q2 -1.282
## Themebipartisanship.and.international.cooperation_q2 0.000
## Themecritical.thinking_q2 0.959
## Themeembrace.new.tech_q2 -0.832
## Themeevidence.based.decision.making_q2 -0.004
## Themeimprove.communication_q2 0.000
## Themeimproved.work.life.balance_q2 -0.832
## Themeintellectual.humility_q2 0.352
## Themelearning.from.pandemics_q2 0.670
## Themeliving.in.the.moment_q2 -0.832
## Themepersonal.resilience_q2 -1.282
## Themeperspective.taking_q2 -0.394
## Themepolitical.engagement...structural.change_q2 0.959
## Themeself.distancing_q2 -0.832
## Themeself.reflection.on.what.s.important_q2 -0.394
## Themeshared.humanity_q2 -1.282
## Themesocial.connectedness_q2 -0.394
## Themesocial.support_q2 -0.394
## Themesolidarity_q2 0.959
## Themesympathy...compassion_q2 -0.394
## FamiliarWisdomYes -0.270
## Themebalance.of.personal...others.interest_q2:FamiliarWisdomYes 0.787
## Themebipartisanship.and.international.cooperation_q2:FamiliarWisdomYes 0.520
## Themecritical.thinking_q2:FamiliarWisdomYes -0.001
## Themeembrace.new.tech_q2:FamiliarWisdomYes -0.001
## Themeevidence.based.decision.making_q2:FamiliarWisdomYes 0.004
## Themeimprove.communication_q2:FamiliarWisdomYes -0.001
## Themeimproved.work.life.balance_q2:FamiliarWisdomYes -0.001
## Themeintellectual.humility_q2:FamiliarWisdomYes 0.000
## Themelearning.from.pandemics_q2:FamiliarWisdomYes -0.001
## Themeliving.in.the.moment_q2:FamiliarWisdomYes -0.001
## Themepersonal.resilience_q2:FamiliarWisdomYes 0.000
## Themeperspective.taking_q2:FamiliarWisdomYes 1.366
## Themepolitical.engagement...structural.change_q2:FamiliarWisdomYes -0.398
## Themeself.distancing_q2:FamiliarWisdomYes 1.603
## Themeself.reflection.on.what.s.important_q2:FamiliarWisdomYes 0.717
## Themeshared.humanity_q2:FamiliarWisdomYes 1.299
## Themesocial.connectedness_q2:FamiliarWisdomYes 0.188
## Themesocial.support_q2:FamiliarWisdomYes 0.000
## Themesolidarity_q2:FamiliarWisdomYes 0.447
## Themesympathy...compassion_q2:FamiliarWisdomYes 1.080
## Pr(>|z|)
## (Intercept) 0.0000185
## Themebalance.of.personal...others.interest_q2 0.200
## Themebipartisanship.and.international.cooperation_q2 1.000
## Themecritical.thinking_q2 0.337
## Themeembrace.new.tech_q2 0.406
## Themeevidence.based.decision.making_q2 0.997
## Themeimprove.communication_q2 1.000
## Themeimproved.work.life.balance_q2 0.406
## Themeintellectual.humility_q2 0.725
## Themelearning.from.pandemics_q2 0.503
## Themeliving.in.the.moment_q2 0.406
## Themepersonal.resilience_q2 0.200
## Themeperspective.taking_q2 0.694
## Themepolitical.engagement...structural.change_q2 0.337
## Themeself.distancing_q2 0.406
## Themeself.reflection.on.what.s.important_q2 0.694
## Themeshared.humanity_q2 0.200
## Themesocial.connectedness_q2 0.694
## Themesocial.support_q2 0.694
## Themesolidarity_q2 0.337
## Themesympathy...compassion_q2 0.694
## FamiliarWisdomYes 0.787
## Themebalance.of.personal...others.interest_q2:FamiliarWisdomYes 0.431
## Themebipartisanship.and.international.cooperation_q2:FamiliarWisdomYes 0.603
## Themecritical.thinking_q2:FamiliarWisdomYes 0.999
## Themeembrace.new.tech_q2:FamiliarWisdomYes 0.999
## Themeevidence.based.decision.making_q2:FamiliarWisdomYes 0.997
## Themeimprove.communication_q2:FamiliarWisdomYes 1.000
## Themeimproved.work.life.balance_q2:FamiliarWisdomYes 1.000
## Themeintellectual.humility_q2:FamiliarWisdomYes 1.000
## Themelearning.from.pandemics_q2:FamiliarWisdomYes 1.000
## Themeliving.in.the.moment_q2:FamiliarWisdomYes 1.000
## Themepersonal.resilience_q2:FamiliarWisdomYes 1.000
## Themeperspective.taking_q2:FamiliarWisdomYes 0.172
## Themepolitical.engagement...structural.change_q2:FamiliarWisdomYes 0.691
## Themeself.distancing_q2:FamiliarWisdomYes 0.109
## Themeself.reflection.on.what.s.important_q2:FamiliarWisdomYes 0.473
## Themeshared.humanity_q2:FamiliarWisdomYes 0.194
## Themesocial.connectedness_q2:FamiliarWisdomYes 0.851
## Themesocial.support_q2:FamiliarWisdomYes 1.000
## Themesolidarity_q2:FamiliarWisdomYes 0.655
## Themesympathy...compassion_q2:FamiliarWisdomYes 0.280
##
## (Intercept) ***
## Themebalance.of.personal...others.interest_q2
## Themebipartisanship.and.international.cooperation_q2
## Themecritical.thinking_q2
## Themeembrace.new.tech_q2
## Themeevidence.based.decision.making_q2
## Themeimprove.communication_q2
## Themeimproved.work.life.balance_q2
## Themeintellectual.humility_q2
## Themelearning.from.pandemics_q2
## Themeliving.in.the.moment_q2
## Themepersonal.resilience_q2
## Themeperspective.taking_q2
## Themepolitical.engagement...structural.change_q2
## Themeself.distancing_q2
## Themeself.reflection.on.what.s.important_q2
## Themeshared.humanity_q2
## Themesocial.connectedness_q2
## Themesocial.support_q2
## Themesolidarity_q2
## Themesympathy...compassion_q2
## FamiliarWisdomYes
## Themebalance.of.personal...others.interest_q2:FamiliarWisdomYes
## Themebipartisanship.and.international.cooperation_q2:FamiliarWisdomYes
## Themecritical.thinking_q2:FamiliarWisdomYes
## Themeembrace.new.tech_q2:FamiliarWisdomYes
## Themeevidence.based.decision.making_q2:FamiliarWisdomYes
## Themeimprove.communication_q2:FamiliarWisdomYes
## Themeimproved.work.life.balance_q2:FamiliarWisdomYes
## Themeintellectual.humility_q2:FamiliarWisdomYes
## Themelearning.from.pandemics_q2:FamiliarWisdomYes
## Themeliving.in.the.moment_q2:FamiliarWisdomYes
## Themepersonal.resilience_q2:FamiliarWisdomYes
## Themeperspective.taking_q2:FamiliarWisdomYes
## Themepolitical.engagement...structural.change_q2:FamiliarWisdomYes
## Themeself.distancing_q2:FamiliarWisdomYes
## Themeself.reflection.on.what.s.important_q2:FamiliarWisdomYes
## Themeshared.humanity_q2:FamiliarWisdomYes
## Themesocial.connectedness_q2:FamiliarWisdomYes
## Themesocial.support_q2:FamiliarWisdomYes
## Themesolidarity_q2:FamiliarWisdomYes
## Themesympathy...compassion_q2:FamiliarWisdomYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 4 (failure to converge in 10000 evaluations)
## boundary (singular) fit: see ?isSingular
## failure to converge in 10000 evaluations
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 18.3424 1 0.00001845 ***
## Theme 20.4231 20 0.4318
## FamiliarWisdom 0.0727 1 0.7875
## Theme:FamiliarWisdom 8.3728 20 0.9891
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * Field + (1 | Name)
## Data: Q2.data.Famil.long
##
## AIC BIC logLik deviance df.resid
## 680 898 -297 594 1133
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.7276 -0.3612 -0.2673 -0.1857 5.3852
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0 0
## Number of obs: 1176, groups: Name, 56
##
## Fixed effects:
## Estimate
## (Intercept) -2.036883281
## Themebalance.of.personal...others.interest_q2 -18.462675833
## Themebipartisanship.and.international.cooperation_q2 -0.000004656
## Themecritical.thinking_q2 0.000019052
## Themeembrace.new.tech_q2 -1.181995871
## Themeevidence.based.decision.making_q2 -18.462462328
## Themeimprove.communication_q2 -18.462604826
## Themeimproved.work.life.balance_q2 -18.462515574
## Themeintellectual.humility_q2 -1.182000277
## Themelearning.from.pandemics_q2 0.332135490
## Themeliving.in.the.moment_q2 -18.462605763
## Themepersonal.resilience_q2 -1.181994468
## Themeperspective.taking_q2 0.332137118
## Themepolitical.engagement...structural.change_q2 -0.000006182
## Themeself.distancing_q2 0.601798507
## Themeself.reflection.on.what.s.important_q2 -0.448025223
## Themeshared.humanity_q2 -1.181993479
## Themesocial.connectedness_q2 -1.181991903
## Themesocial.support_q2 -0.448022895
## Themesolidarity_q2 1.400894253
## Themesympathy...compassion_q2 -0.448020714
## FieldSC -0.602158590
## Themebalance.of.personal...others.interest_q2:FieldSC 18.462661064
## Themebipartisanship.and.international.cooperation_q2:FieldSC 0.441822132
## Themecritical.thinking_q2:FieldSC 0.767215919
## Themeembrace.new.tech_q2:FieldSC 0.453740080
## Themeevidence.based.decision.making_q2:FieldSC 17.734212568
## Themeimprove.communication_q2:FieldSC 19.229847200
## Themeimproved.work.life.balance_q2:FieldSC 18.462497663
## Themeintellectual.humility_q2:FieldSC 1.949241744
## Themelearning.from.pandemics_q2:FieldSC -0.332153714
## Themeliving.in.the.moment_q2:FieldSC 18.462588277
## Themepersonal.resilience_q2:FieldSC -20.269410175
## Themeperspective.taking_q2:FieldSC 0.109676543
## Themepolitical.engagement...structural.change_q2:FieldSC 1.029612539
## Themeself.distancing_q2:FieldSC -1.330051567
## Themeself.reflection.on.what.s.important_q2:FieldSC 0.889841199
## Themeshared.humanity_q2:FieldSC 1.181981706
## Themesocial.connectedness_q2:FieldSC 1.623809335
## Themesocial.support_q2:FieldSC -0.280236137
## Themesolidarity_q2:FieldSC -2.129153215
## Themesympathy...compassion_q2:FieldSC 1.215256065
## Std. Error
## (Intercept) 0.613735715
## Themebalance.of.personal...others.interest_q2 109.373387828
## Themebipartisanship.and.international.cooperation_q2 0.868031602
## Themecritical.thinking_q2 0.868020744
## Themeembrace.new.tech_q2 1.190227440
## Themeevidence.based.decision.making_q2 121.303470656
## Themeimprove.communication_q2 148.579903805
## Themeimproved.work.life.balance_q2 119.301013255
## Themeintellectual.humility_q2 1.190269224
## Themelearning.from.pandemics_q2 0.819827592
## Themeliving.in.the.moment_q2 139.470454486
## Themepersonal.resilience_q2 1.190200356
## Themeperspective.taking_q2 0.819837164
## Themepolitical.engagement...structural.change_q2 0.868029859
## Themeself.distancing_q2 0.790110256
## Themeself.reflection.on.what.s.important_q2 0.958294733
## Themeshared.humanity_q2 1.190191742
## Themesocial.connectedness_q2 1.190221831
## Themesocial.support_q2 0.958289907
## Themesolidarity_q2 0.739325209
## Themesympathy...compassion_q2 0.958275569
## FieldSC 0.955036068
## Themebalance.of.personal...others.interest_q2:FieldSC 109.374382834
## Themebipartisanship.and.international.cooperation_q2:FieldSC 1.288113703
## Themecritical.thinking_q2:FieldSC 1.255916427
## Themeembrace.new.tech_q2:FieldSC 1.728139272
## Themeevidence.based.decision.making_q2:FieldSC 121.302931909
## Themeimprove.communication_q2:FieldSC 148.582197495
## Themeimproved.work.life.balance_q2:FieldSC 119.303219759
## Themeintellectual.humility_q2:FieldSC 1.496882003
## Themelearning.from.pandemics_q2:FieldSC 1.320315364
## Themeliving.in.the.moment_q2:FieldSC 139.472197301
## Themepersonal.resilience_q2:FieldSC 162.369895289
## Themeperspective.taking_q2:FieldSC 1.256162237
## Themepolitical.engagement...structural.change_q2:FieldSC 1.236484585
## Themeself.distancing_q2:FieldSC 1.481249616
## Themeself.reflection.on.what.s.important_q2:FieldSC 1.350583383
## Themeshared.humanity_q2:FieldSC 1.577220324
## Themesocial.connectedness_q2:FieldSC 1.523947571
## Themesocial.support_q2:FieldSC 1.577415567
## Themesolidarity_q2:FieldSC 1.454847015
## Themesympathy...compassion_q2:FieldSC 1.319898379
## z value Pr(>|z|)
## (Intercept) -3.319 0.000904
## Themebalance.of.personal...others.interest_q2 -0.169 0.865951
## Themebipartisanship.and.international.cooperation_q2 0.000 0.999996
## Themecritical.thinking_q2 0.000 0.999982
## Themeembrace.new.tech_q2 -0.993 0.320669
## Themeevidence.based.decision.making_q2 -0.152 0.879029
## Themeimprove.communication_q2 -0.124 0.901109
## Themeimproved.work.life.balance_q2 -0.155 0.877014
## Themeintellectual.humility_q2 -0.993 0.320684
## Themelearning.from.pandemics_q2 0.405 0.685383
## Themeliving.in.the.moment_q2 -0.132 0.894687
## Themepersonal.resilience_q2 -0.993 0.320659
## Themeperspective.taking_q2 0.405 0.685385
## Themepolitical.engagement...structural.change_q2 0.000 0.999994
## Themeself.distancing_q2 0.762 0.446261
## Themeself.reflection.on.what.s.important_q2 -0.468 0.640125
## Themeshared.humanity_q2 -0.993 0.320655
## Themesocial.connectedness_q2 -0.993 0.320668
## Themesocial.support_q2 -0.468 0.640125
## Themesolidarity_q2 1.895 0.058115
## Themesympathy...compassion_q2 -0.468 0.640122
## FieldSC -0.631 0.528362
## Themebalance.of.personal...others.interest_q2:FieldSC 0.169 0.865952
## Themebipartisanship.and.international.cooperation_q2:FieldSC 0.343 0.731599
## Themecritical.thinking_q2:FieldSC 0.611 0.541278
## Themeembrace.new.tech_q2:FieldSC 0.263 0.792890
## Themeevidence.based.decision.making_q2:FieldSC 0.146 0.883765
## Themeimprove.communication_q2:FieldSC 0.129 0.897024
## Themeimproved.work.life.balance_q2:FieldSC 0.155 0.877016
## Themeintellectual.humility_q2:FieldSC 1.302 0.192848
## Themelearning.from.pandemics_q2:FieldSC -0.252 0.801372
## Themeliving.in.the.moment_q2:FieldSC 0.132 0.894688
## Themepersonal.resilience_q2:FieldSC -0.125 0.900654
## Themeperspective.taking_q2:FieldSC 0.087 0.930424
## Themepolitical.engagement...structural.change_q2:FieldSC 0.833 0.405018
## Themeself.distancing_q2:FieldSC -0.898 0.369225
## Themeself.reflection.on.what.s.important_q2:FieldSC 0.659 0.509988
## Themeshared.humanity_q2:FieldSC 0.749 0.453611
## Themesocial.connectedness_q2:FieldSC 1.066 0.286637
## Themesocial.support_q2:FieldSC -0.178 0.858994
## Themesolidarity_q2:FieldSC -1.463 0.143334
## Themesympathy...compassion_q2:FieldSC 0.921 0.357197
##
## (Intercept) ***
## Themebalance.of.personal...others.interest_q2
## Themebipartisanship.and.international.cooperation_q2
## Themecritical.thinking_q2
## Themeembrace.new.tech_q2
## Themeevidence.based.decision.making_q2
## Themeimprove.communication_q2
## Themeimproved.work.life.balance_q2
## Themeintellectual.humility_q2
## Themelearning.from.pandemics_q2
## Themeliving.in.the.moment_q2
## Themepersonal.resilience_q2
## Themeperspective.taking_q2
## Themepolitical.engagement...structural.change_q2
## Themeself.distancing_q2
## Themeself.reflection.on.what.s.important_q2
## Themeshared.humanity_q2
## Themesocial.connectedness_q2
## Themesocial.support_q2
## Themesolidarity_q2 .
## Themesympathy...compassion_q2
## FieldSC
## Themebalance.of.personal...others.interest_q2:FieldSC
## Themebipartisanship.and.international.cooperation_q2:FieldSC
## Themecritical.thinking_q2:FieldSC
## Themeembrace.new.tech_q2:FieldSC
## Themeevidence.based.decision.making_q2:FieldSC
## Themeimprove.communication_q2:FieldSC
## Themeimproved.work.life.balance_q2:FieldSC
## Themeintellectual.humility_q2:FieldSC
## Themelearning.from.pandemics_q2:FieldSC
## Themeliving.in.the.moment_q2:FieldSC
## Themepersonal.resilience_q2:FieldSC
## Themeperspective.taking_q2:FieldSC
## Themepolitical.engagement...structural.change_q2:FieldSC
## Themeself.distancing_q2:FieldSC
## Themeself.reflection.on.what.s.important_q2:FieldSC
## Themeshared.humanity_q2:FieldSC
## Themesocial.connectedness_q2:FieldSC
## Themesocial.support_q2:FieldSC
## Themesolidarity_q2:FieldSC
## Themesympathy...compassion_q2:FieldSC
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 11.0146 1 0.000904 ***
## Theme 21.0989 20 0.391330
## Field 0.3975 1 0.528362
## Theme:Field 14.1788 20 0.821314
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
8.5 Frequencies by Cognitive Style: Dialectical Thinking
8.5.1 Is there a difference in themes mentioned between experts who show dialecticism in their reasoning about societal change vs. those who do not invoke dialectism?
It appears that people invoking dialecticism in their reasoning were more likely to raise the themes of perspective-taking, intellectual humility, critical thinking,social connectedness, political cooperation, and work-life balance compared to those who did not show dialecticism.
8.5.2 Is there a difference in Common Wisdom Model themes between dialectical experts vs. those who do not invoke dialectism?
It appears there is a significant difference in overall prevalence of CWM components (morals and meta-cog) over other categories. Further, there is a trend toward this difference being more pronounced among folks reasoning in a dialectical fashion about their forecasts (z-score ratio of 1.61 to 1: 4.08 vs. 2.53).
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 1.3263 1 0.24946
## type 5.5351 2 0.06282 .
## Dialecticism 0.7512 1 0.38610
## type:Dialecticism 2.5948 2 0.27324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## contrast estimate SE df z.ratio p.value
## metacog.Q2 - morals.Q2 0.107 0.237 Inf 0.453 0.8929
## metacog.Q2 - others.Q2 0.545 0.273 Inf 1.997 0.1130
## morals.Q2 - others.Q2 0.438 0.278 Inf 1.573 0.2573
##
## Results are averaged over the levels of: Dialecticism
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 5.2736 1 0.02165 *
## type 16.6584 1 0.00004475 ***
## Dialecticism 1.0169 1 0.31326
## type:Dialecticism 2.5568 1 0.10982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Dialecticism = Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.Q2 - others.Q2 1.584 0.388 Inf 4.081 <.0001
##
## Dialecticism = Not Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.Q2 - others.Q2 0.788 0.311 Inf 2.532 0.0113
##
## Results are given on the log (not the response) scale.
##
## Pearson's Chi-squared test
##
## data: xtabs(Count ~ FamiliarWisdom + Theme, data = Q2.data.W.CWM)
## X-squared = 3.3113, df = 2, p-value = 0.191
8.6 MCA
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.11 11.24 11.24
## dim 2 0.09 9.12 20.36
## dim 3 0.08 8.12 28.48
## dim 4 0.07 7.20 35.69
## dim 5 0.07 7.08 42.77
## dim 6 0.06 6.46 49.23
## dim 7 0.06 6.07 55.30
## dim 8 0.05 5.43 60.73
## dim 9 0.05 5.18 65.91
## dim 10 0.05 4.92 70.84
## dim 11 0.04 4.09 74.93
## dim 12 0.04 3.87 78.80
## dim 13 0.04 3.54 82.34
## dim 14 0.03 3.19 85.53
## dim 15 0.03 3.05 88.58
## dim 16 0.03 2.85 91.43
## dim 17 0.02 2.42 93.85
## dim 18 0.02 2.15 95.99
## dim 19 0.02 1.96 97.95
## dim 20 0.01 1.30 99.25
## dim 21 0.01 0.75 100.00
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Social Connectedness_0 0.37 0.01 0.02 0.05 0.01
## Social Connectedness_1 0.37 0.01 0.02 0.05 0.01
## Social Support_0 0.43 0.00 0.02 0.01 0.01
## Social Support_1 0.43 0.00 0.02 0.01 0.01
## Evidence-based Judgement_0 0.00 0.00 0.00 0.00 0.00
## Evidence-based Judgement_1 0.00 0.00 0.00 0.00 0.00
## Work-Life Balance_0 0.55 0.00 0.00 0.00 0.00
## Work-Life Balance_1 0.55 0.00 0.00 0.00 0.00
## Acknowledge Uncertainty_0 0.01 0.31 0.09 0.02 0.28
## Acknowledge Uncertainty_1 0.01 0.31 0.09 0.02 0.28
## Balance Diverse Interests_0 0.56 0.00 0.01 0.00 0.00
## Balance Diverse Interests_1 0.56 0.00 0.01 0.00 0.00
## Perspective-taking_0 0.01 0.21 0.21 0.02 0.07
## Perspective-taking_1 0.01 0.21 0.21 0.02 0.07
## Critical Thinking_0 0.02 0.18 0.12 0.01 0.00
## Critical Thinking_1 0.02 0.18 0.12 0.01 0.00
## Polit.Cooperation_0 0.03 0.04 0.31 0.03 0.19
## Polit.Cooperation_1 0.03 0.04 0.31 0.03 0.19
## Solidarity_0 0.00 0.32 0.01 0.00 0.25
## Solidarity_1 0.00 0.32 0.01 0.00 0.25
## Improved Communication_0 0.00 0.17 0.11 0.22 0.02
## Improved Communication_1 0.00 0.17 0.11 0.22 0.02
## Intellectual Humility_0 0.03 0.06 0.20 0.00 0.02
## Intellectual Humility_1 0.03 0.06 0.20 0.00 0.02
## Live in the Moment_0 0.01 0.02 0.00 0.16 0.01
## Live in the Moment_1 0.01 0.02 0.00 0.16 0.01
## Learning from Pandemics_0 0.03 0.01 0.00 0.01 0.46
## Learning from Pandemics_1 0.03 0.01 0.00 0.01 0.46
## Polit.Structural Change_0 0.04 0.00 0.25 0.10 0.00
## Polit.Structural Change_1 0.04 0.00 0.25 0.10 0.00
## What's Important?_0 0.02 0.04 0.06 0.38 0.03
## What's Important?_1 0.02 0.04 0.06 0.38 0.03
## Shared Humanity_0 0.00 0.00 0.05 0.09 0.07
## Shared Humanity_1 0.00 0.00 0.05 0.09 0.07
## Sympathy&Compassion_0 0.24 0.00 0.01 0.02 0.07
## Sympathy&Compassion_1 0.24 0.00 0.01 0.02 0.07
## Self-distancing_0 0.00 0.01 0.08 0.22 0.00
## Self-distancing_1 0.00 0.01 0.08 0.22 0.00
## Embrace New Tech_0 0.00 0.06 0.02 0.16 0.00
## Embrace New Tech_1 0.00 0.06 0.02 0.16 0.00
## Personal Resilience_0 0.00 0.46 0.16 0.01 0.00
## Personal Resilience_1 0.00 0.46 0.16 0.01 0.00
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Social Connectedness_0 1.11 0.04 0.10 0.22 0.03
## Social Connectedness_1 14.38 0.49 1.30 2.83 0.45
## Social Support_0 0.98 0.01 0.05 0.02 0.02
## Social Support_1 17.33 0.12 0.85 0.32 0.32
## Evidence-based Judgement_0 0.00 0.00 0.00 0.00 0.00
## Evidence-based Judgement_1 0.06 0.10 0.10 0.04 0.07
## Work-Life Balance_0 0.83 0.01 0.00 0.01 0.00
## Work-Life Balance_1 22.30 0.14 0.02 0.22 0.05
## Acknowledge Uncertainty_0 0.03 1.43 0.47 0.13 1.68
## Acknowledge Uncertainty_1 0.33 14.57 4.76 1.35 17.16
## Balance Diverse Interests_0 0.85 0.00 0.02 0.00 0.01
## Balance Diverse Interests_1 22.99 0.09 0.47 0.02 0.19
## Perspective-taking_0 0.03 1.36 1.54 0.16 0.62
## Perspective-taking_1 0.19 9.50 10.80 1.10 4.35
## Critical Thinking_0 0.09 1.18 0.85 0.05 0.02
## Critical Thinking_1 0.60 8.27 5.96 0.37 0.15
## Polit.Cooperation_0 0.14 0.21 1.93 0.19 1.37
## Polit.Cooperation_1 1.13 1.78 16.05 1.56 11.39
## Solidarity_0 0.04 3.00 0.06 0.02 3.04
## Solidarity_1 0.17 13.80 0.29 0.09 14.00
## Improved Communication_0 0.00 0.65 0.47 1.04 0.09
## Improved Communication_1 0.02 8.39 6.07 13.51 1.14
## Intellectual Humility_0 0.13 0.28 1.06 0.01 0.09
## Intellectual Humility_1 1.34 2.87 10.79 0.14 0.94
## Live in the Moment_0 0.01 0.04 0.01 0.38 0.01
## Live in the Moment_1 0.34 1.05 0.22 10.18 0.34
## Learning from Pandemics_0 0.15 0.06 0.00 0.09 3.30
## Learning from Pandemics_1 1.25 0.49 0.00 0.76 27.54
## Polit.Structural Change_0 0.23 0.02 2.08 0.92 0.02
## Polit.Structural Change_1 1.41 0.12 12.46 5.55 0.12
## What's Important?_0 0.08 0.20 0.31 2.23 0.16
## What's Important?_1 0.85 2.04 3.20 22.70 1.61
## Shared Humanity_0 0.00 0.01 0.15 0.33 0.24
## Shared Humanity_1 0.06 0.11 2.65 5.87 4.22
## Sympathy&Compassion_0 1.09 0.00 0.04 0.17 0.48
## Sympathy&Compassion_1 9.06 0.01 0.35 1.40 4.03
## Self-distancing_0 0.01 0.06 0.47 1.58 0.03
## Self-distancing_1 0.06 0.47 3.93 13.20 0.27
## Embrace New Tech_0 0.01 0.11 0.03 0.39 0.01
## Embrace New Tech_1 0.15 2.95 0.89 10.40 0.26
## Personal Resilience_0 0.00 0.43 0.16 0.01 0.00
## Personal Resilience_1 0.18 23.54 9.03 0.44 0.15
Similar to prior results, we can address the question of diversity by examining the degree to which scores across themes are reducible to common component, examining MCAs.
It appears that 10 dimensions is as good a start to account for 21 themes for Question 2 (advice for pos consequences), as any other. Once again, the scree plot line is pretty flat.
Again, keep in mind that reducing 21 items to 10 dimensions is not parsimonious. Moreover, when we reduce the items to 10 components, the first component explains only 11 % of the variance, and in total 10 components explain 70% of variance.
Given that each theme by default explains 4.8% of the variance (1/21), this is not much.
Furthermore, each of these components is largely based on 1-2 items (cos2 > .4).
In short, MCA analyses show substantial diversity.
8.7 Network Graph
Even after removing negligible correlations (r < .17), cluster analyses on top of the network graphs show seven clusters, two of which are strongly inter-related (social connectedness and improved communication):
• Critical thinking/intellectual humility
• Willingness to adopt/learn new tech
• Meta-cognition: perspective-taking, balancing different interests, acknowledge uncertainty, and resilience
• Social cognitions: Balance of different interests, social connectedness, sympathy, social support
• Big picture focus: Shared humanity and self-distancing
• Solidarity, political engagement & cooperation
• Focus on what’s important/mindfulness of the present
• Key is social connectedness - it connects two clusters. Solidarity also appears critical and close to the center of the network (proximity to most themes)
8.8 Convergence vs. divergence of themes over time
Once again, we binned scores in the the same four groups as above: June, July, Sept/early Oct, and second part of Oct-early Dec.
Focus on meta-cognition consistently remains the most frequent recommendation over time (sharing it with prosocial category in September).
Whereas discussion of societal strategies for wisdom decline in prevalence over time, one strategy clearly picks up in the fall - prosocial strategies!
One can post-hoc speculate about it. It may be due to greater fatigue and U.S. election, with topics like solidarity becoming more important. It may also have something to do with the fact that prosocial themes equally picked up in answer to the question about type of positive change.
In other words, scientists forecast greater prosociality OR they recommend greater prosociality. Both communicate some hope for what may be missing in a current society they live in.
9 Wisdom against Negative Consequences
9.1 Summary
We identified 23 distinct categories. Except for five themes, categories were mentioned by less than 10% of the interviewees.
Only two theme was mentioned by at least ten people: Long-term orientation (16%) and Willingness to introduce political-structural change (24%).
Overall, necessity for political/structure change, long-term focus, and sympathy/compassion are key strategies for mitigating negative consequences of the pandemic, followed by two other social strategies: solidarity, and social support.
Importantly, ten out of 23 identified themes were meta-cognitive in nature, consistent with recent research on meta-cognition being at the heart of wisdom. It appears leading scholars share this intuition for the context of post-pandemic challenges.
9.2 Frequency Chart
9.3 How many themes per person?
Did people just report 1-2 themes or a great number of themes? How do such trends vary across people?
It turns out most people mentioned just one or two (median) negative consequences. Two people mentioned up to 5 and 6 themes, respectively.
9.4 Frequencies by Gender and Field
Once again, it is not surprising that wisdom experts mention meta-cognitive and moral considerations. The question is whether scientists without much familiarity with the science of wisdom would mention similar constructs for this question, too. It appears that is the case, with non-wisdom experts emphasizing such meta-cognitive categories as long-term orientation, sympathy and compassion, context sensitivity, appreciation of the idea of shared humanity, critical thinking and acknowledging uncertainty, along with moral aspirations about solidarity, social support, and paying greater attention to one’s family and relationships, and promoting political cooperation and societal change toward fair and just society. In fact, the latter categories were strongly prevalent among non-wisdom experts.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * FamiliarWisdom + (1 | Name)
## Data: Q4.data.Famil.long
##
## AIC BIC logLik deviance df.resid
## 789.7 1031.4 -347.8 695.7 1218
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6433 -0.3727 -0.2810 -0.1581 6.3245
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.000000001552 0.0000394
## Number of obs: 1265, groups: Name, 55
##
## Fixed effects:
## Estimate
## (Intercept) -2.5389677660
## Themebalance.of.personal...others.interest_q4 -1.1499033364
## Themebipartisanship.and.international.cooperation_q4 0.5648835355
## Themecontext.sensitivity_q4 0.3143498571
## Themecritical.thinking_q4 -0.0000005615
## Themeevidence.based.decision.making_q4 -0.4314518385
## Themegratitude_q4 -1.1499032116
## Themeimprove.communication_q4 0.3143490351
## Themeliving.in.the.moment_q4 -0.4314471297
## Themelong.term.orientation_q4 1.1218968428
## Themeoptimism...positivity_q4 -0.4314510557
## Themepatience_q4 -0.4314417334
## Themeperspective.taking_q4 -1.1499001822
## Themepolitical.engagement...structural.change_q4 1.6565819242
## Themeself.distancing_q4 -0.4314563442
## Themeself.reflection.on.what.s.important_q4 -0.0000067748
## Themeshared.humanity_q4 0.0000041393
## Themesocial.awareness_q4 -0.0000094151
## Themesocial.connectedness_q4 0.5648813551
## Themesocial.support_q4 0.5648901546
## Themesolidarity_q4 -0.0000169240
## Themestrive.for.socio.economic.equality_q4 -0.0000025831
## Themesympathy...compassion_q4 0.7753796734
## FamiliarWisdomYes 0.7471546708
## Themebalance.of.personal...others.interest_q4:FamiliarWisdomYes 1.1499655928
## Themebipartisanship.and.international.cooperation_q4:FamiliarWisdomYes -20.4666206377
## Themecontext.sensitivity_q4:FamiliarWisdomYes -20.4167467544
## Themecritical.thinking_q4:FamiliarWisdomYes 0.0000570844
## Themeevidence.based.decision.making_q4:FamiliarWisdomYes -0.3416745815
## Themegratitude_q4:FamiliarWisdomYes -19.2232530663
## Themeimprove.communication_q4:FamiliarWisdomYes -20.1525413140
## Themeliving.in.the.moment_q4:FamiliarWisdomYes -19.6071202384
## Themelong.term.orientation_q4:FamiliarWisdomYes -1.1218398248
## Themeoptimism...positivity_q4:FamiliarWisdomYes -20.4957287837
## Themepatience_q4:FamiliarWisdomYes -20.5879164941
## Themeperspective.taking_q4:FamiliarWisdomYes 2.0254229510
## Themepolitical.engagement...structural.change_q4:FamiliarWisdomYes -2.4297109657
## Themeself.distancing_q4:FamiliarWisdomYes 0.4315211312
## Themeself.reflection.on.what.s.important_q4:FamiliarWisdomYes 0.0000630702
## Themeshared.humanity_q4:FamiliarWisdomYes 0.0000405286
## Themesocial.awareness_q4:FamiliarWisdomYes -0.7731174474
## Themesocial.connectedness_q4:FamiliarWisdomYes -1.3380007353
## Themesocial.support_q4:FamiliarWisdomYes -1.3380293084
## Themesolidarity_q4:FamiliarWisdomYes 0.4925584744
## Themestrive.for.socio.economic.equality_q4:FamiliarWisdomYes -0.7731164688
## Themesympathy...compassion_q4:FamiliarWisdomYes -0.2828566417
## Std. Error
## (Intercept) 0.5997059684
## Themebalance.of.personal...others.interest_q4 1.1767068902
## Themebipartisanship.and.international.cooperation_q4 0.7664369368
## Themecontext.sensitivity_q4 0.7979179264
## Themecritical.thinking_q4 0.8481124155
## Themeevidence.based.decision.making_q4 0.9408988850
## Themegratitude_q4 1.1767068385
## Themeimprove.communication_q4 0.7979180413
## Themeliving.in.the.moment_q4 0.9408976980
## Themelong.term.orientation_q4 0.7176006850
## Themeoptimism...positivity_q4 0.9408986877
## Themepatience_q4 0.9408963377
## Themeperspective.taking_q4 1.1767055835
## Themepolitical.engagement...structural.change_q4 0.6909871036
## Themeself.distancing_q4 0.9409000208
## Themeself.reflection.on.what.s.important_q4 0.8481135401
## Themeshared.humanity_q4 0.8481115646
## Themesocial.awareness_q4 0.8481140180
## Themesocial.connectedness_q4 0.7664371818
## Themesocial.support_q4 0.7664361931
## Themesolidarity_q4 0.8481153771
## Themestrive.for.socio.economic.equality_q4 0.8481127814
## Themesympathy...compassion_q4 0.7449062187
## FamiliarWisdomYes 0.9710833778
## Themebalance.of.personal...others.interest_q4:FamiliarWisdomYes 1.5972866120
## Themebipartisanship.and.international.cooperation_q4:FamiliarWisdomYes 13728.7360549122
## Themecontext.sensitivity_q4:FamiliarWisdomYes 15177.6060513519
## Themecritical.thinking_q4:FamiliarWisdomYes 1.3733107710
## Themeevidence.based.decision.making_q4:FamiliarWisdomYes 1.5954812383
## Themegratitude_q4:FamiliarWisdomYes 17377.9254101760
## Themeimprove.communication_q4:FamiliarWisdomYes 13299.3976821390
## Themeliving.in.the.moment_q4:FamiliarWisdomYes 14700.8643530631
## Themelong.term.orientation_q4:FamiliarWisdomYes 1.2967799895
## Themeoptimism...positivity_q4:FamiliarWisdomYes 22924.6448232930
## Themepatience_q4:FamiliarWisdomYes 24005.9500638248
## Themeperspective.taking_q4:FamiliarWisdomYes 1.5224952045
## Themepolitical.engagement...structural.change_q4:FamiliarWisdomYes 1.4620996092
## Themeself.distancing_q4:FamiliarWisdomYes 1.4324724117
## Themeself.reflection.on.what.s.important_q4:FamiliarWisdomYes 1.3733115000
## Themeshared.humanity_q4:FamiliarWisdomYes 1.3733120439
## Themesocial.awareness_q4:FamiliarWisdomYes 1.5425846706
## Themesocial.connectedness_q4:FamiliarWisdomYes 1.4992295106
## Themesocial.support_q4:FamiliarWisdomYes 1.4992350924
## Themesolidarity_q4:FamiliarWisdomYes 1.3141137782
## Themestrive.for.socio.economic.equality_q4:FamiliarWisdomYes 1.5425816538
## Themesympathy...compassion_q4:FamiliarWisdomYes 1.2499940373
## z value
## (Intercept) -4.234
## Themebalance.of.personal...others.interest_q4 -0.977
## Themebipartisanship.and.international.cooperation_q4 0.737
## Themecontext.sensitivity_q4 0.394
## Themecritical.thinking_q4 0.000
## Themeevidence.based.decision.making_q4 -0.459
## Themegratitude_q4 -0.977
## Themeimprove.communication_q4 0.394
## Themeliving.in.the.moment_q4 -0.459
## Themelong.term.orientation_q4 1.563
## Themeoptimism...positivity_q4 -0.459
## Themepatience_q4 -0.459
## Themeperspective.taking_q4 -0.977
## Themepolitical.engagement...structural.change_q4 2.397
## Themeself.distancing_q4 -0.459
## Themeself.reflection.on.what.s.important_q4 0.000
## Themeshared.humanity_q4 0.000
## Themesocial.awareness_q4 0.000
## Themesocial.connectedness_q4 0.737
## Themesocial.support_q4 0.737
## Themesolidarity_q4 0.000
## Themestrive.for.socio.economic.equality_q4 0.000
## Themesympathy...compassion_q4 1.041
## FamiliarWisdomYes 0.769
## Themebalance.of.personal...others.interest_q4:FamiliarWisdomYes 0.720
## Themebipartisanship.and.international.cooperation_q4:FamiliarWisdomYes -0.001
## Themecontext.sensitivity_q4:FamiliarWisdomYes -0.001
## Themecritical.thinking_q4:FamiliarWisdomYes 0.000
## Themeevidence.based.decision.making_q4:FamiliarWisdomYes -0.214
## Themegratitude_q4:FamiliarWisdomYes -0.001
## Themeimprove.communication_q4:FamiliarWisdomYes -0.002
## Themeliving.in.the.moment_q4:FamiliarWisdomYes -0.001
## Themelong.term.orientation_q4:FamiliarWisdomYes -0.865
## Themeoptimism...positivity_q4:FamiliarWisdomYes -0.001
## Themepatience_q4:FamiliarWisdomYes -0.001
## Themeperspective.taking_q4:FamiliarWisdomYes 1.330
## Themepolitical.engagement...structural.change_q4:FamiliarWisdomYes -1.662
## Themeself.distancing_q4:FamiliarWisdomYes 0.301
## Themeself.reflection.on.what.s.important_q4:FamiliarWisdomYes 0.000
## Themeshared.humanity_q4:FamiliarWisdomYes 0.000
## Themesocial.awareness_q4:FamiliarWisdomYes -0.501
## Themesocial.connectedness_q4:FamiliarWisdomYes -0.892
## Themesocial.support_q4:FamiliarWisdomYes -0.892
## Themesolidarity_q4:FamiliarWisdomYes 0.375
## Themestrive.for.socio.economic.equality_q4:FamiliarWisdomYes -0.501
## Themesympathy...compassion_q4:FamiliarWisdomYes -0.226
## Pr(>|z|)
## (Intercept) 0.000023
## Themebalance.of.personal...others.interest_q4 0.3285
## Themebipartisanship.and.international.cooperation_q4 0.4611
## Themecontext.sensitivity_q4 0.6936
## Themecritical.thinking_q4 1.0000
## Themeevidence.based.decision.making_q4 0.6466
## Themegratitude_q4 0.3285
## Themeimprove.communication_q4 0.6936
## Themeliving.in.the.moment_q4 0.6466
## Themelong.term.orientation_q4 0.1180
## Themeoptimism...positivity_q4 0.6466
## Themepatience_q4 0.6466
## Themeperspective.taking_q4 0.3285
## Themepolitical.engagement...structural.change_q4 0.0165
## Themeself.distancing_q4 0.6466
## Themeself.reflection.on.what.s.important_q4 1.0000
## Themeshared.humanity_q4 1.0000
## Themesocial.awareness_q4 1.0000
## Themesocial.connectedness_q4 0.4611
## Themesocial.support_q4 0.4611
## Themesolidarity_q4 1.0000
## Themestrive.for.socio.economic.equality_q4 1.0000
## Themesympathy...compassion_q4 0.2979
## FamiliarWisdomYes 0.4417
## Themebalance.of.personal...others.interest_q4:FamiliarWisdomYes 0.4716
## Themebipartisanship.and.international.cooperation_q4:FamiliarWisdomYes 0.9988
## Themecontext.sensitivity_q4:FamiliarWisdomYes 0.9989
## Themecritical.thinking_q4:FamiliarWisdomYes 1.0000
## Themeevidence.based.decision.making_q4:FamiliarWisdomYes 0.8304
## Themegratitude_q4:FamiliarWisdomYes 0.9991
## Themeimprove.communication_q4:FamiliarWisdomYes 0.9988
## Themeliving.in.the.moment_q4:FamiliarWisdomYes 0.9989
## Themelong.term.orientation_q4:FamiliarWisdomYes 0.3870
## Themeoptimism...positivity_q4:FamiliarWisdomYes 0.9993
## Themepatience_q4:FamiliarWisdomYes 0.9993
## Themeperspective.taking_q4:FamiliarWisdomYes 0.1834
## Themepolitical.engagement...structural.change_q4:FamiliarWisdomYes 0.0966
## Themeself.distancing_q4:FamiliarWisdomYes 0.7632
## Themeself.reflection.on.what.s.important_q4:FamiliarWisdomYes 1.0000
## Themeshared.humanity_q4:FamiliarWisdomYes 1.0000
## Themesocial.awareness_q4:FamiliarWisdomYes 0.6162
## Themesocial.connectedness_q4:FamiliarWisdomYes 0.3721
## Themesocial.support_q4:FamiliarWisdomYes 0.3721
## Themesolidarity_q4:FamiliarWisdomYes 0.7078
## Themestrive.for.socio.economic.equality_q4:FamiliarWisdomYes 0.6162
## Themesympathy...compassion_q4:FamiliarWisdomYes 0.8210
##
## (Intercept) ***
## Themebalance.of.personal...others.interest_q4
## Themebipartisanship.and.international.cooperation_q4
## Themecontext.sensitivity_q4
## Themecritical.thinking_q4
## Themeevidence.based.decision.making_q4
## Themegratitude_q4
## Themeimprove.communication_q4
## Themeliving.in.the.moment_q4
## Themelong.term.orientation_q4
## Themeoptimism...positivity_q4
## Themepatience_q4
## Themeperspective.taking_q4
## Themepolitical.engagement...structural.change_q4 *
## Themeself.distancing_q4
## Themeself.reflection.on.what.s.important_q4
## Themeshared.humanity_q4
## Themesocial.awareness_q4
## Themesocial.connectedness_q4
## Themesocial.support_q4
## Themesolidarity_q4
## Themestrive.for.socio.economic.equality_q4
## Themesympathy...compassion_q4
## FamiliarWisdomYes
## Themebalance.of.personal...others.interest_q4:FamiliarWisdomYes
## Themebipartisanship.and.international.cooperation_q4:FamiliarWisdomYes
## Themecontext.sensitivity_q4:FamiliarWisdomYes
## Themecritical.thinking_q4:FamiliarWisdomYes
## Themeevidence.based.decision.making_q4:FamiliarWisdomYes
## Themegratitude_q4:FamiliarWisdomYes
## Themeimprove.communication_q4:FamiliarWisdomYes
## Themeliving.in.the.moment_q4:FamiliarWisdomYes
## Themelong.term.orientation_q4:FamiliarWisdomYes
## Themeoptimism...positivity_q4:FamiliarWisdomYes
## Themepatience_q4:FamiliarWisdomYes
## Themeperspective.taking_q4:FamiliarWisdomYes
## Themepolitical.engagement...structural.change_q4:FamiliarWisdomYes .
## Themeself.distancing_q4:FamiliarWisdomYes
## Themeself.reflection.on.what.s.important_q4:FamiliarWisdomYes
## Themeshared.humanity_q4:FamiliarWisdomYes
## Themesocial.awareness_q4:FamiliarWisdomYes
## Themesocial.connectedness_q4:FamiliarWisdomYes
## Themesocial.support_q4:FamiliarWisdomYes
## Themesolidarity_q4:FamiliarWisdomYes
## Themestrive.for.socio.economic.equality_q4:FamiliarWisdomYes
## Themesympathy...compassion_q4:FamiliarWisdomYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 17.924 1 0.00002299 ***
## Theme 34.583 22 0.04281 *
## FamiliarWisdom 0.592 1 0.44165
## Theme:FamiliarWisdom 13.571 22 0.91600
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * Field + (1 | Name)
## Data: Q4.data.Famil.long
##
## AIC BIC logLik deviance df.resid
## 786.8 1028.5 -346.4 692.8 1218
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6030 -0.3693 -0.2673 -0.1857 5.3852
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.0000000002795 0.00001672
## Number of obs: 1265, groups: Name, 55
##
## Fixed effects:
## Estimate
## (Intercept) -1.6582177656
## Themebalance.of.personal...others.interest_q4 -0.7841230090
## Themebipartisanship.and.international.cooperation_q4 -0.3342100720
## Themecontext.sensitivity_q4 -1.5198379486
## Themecritical.thinking_q4 -0.7841239050
## Themeevidence.based.decision.making_q4 -1.5198557495
## Themegratitude_q4 -1.5198257060
## Themeimprove.communication_q4 -18.8127878408
## Themeliving.in.the.moment_q4 -0.7841284314
## Themelong.term.orientation_q4 -0.0000165005
## Themeoptimism...positivity_q4 -18.8127478601
## Themepatience_q4 -1.5198478866
## Themeperspective.taking_q4 -0.0000102136
## Themepolitical.engagement...structural.change_q4 0.2719219659
## Themeself.distancing_q4 -0.3342070837
## Themeself.reflection.on.what.s.important_q4 -0.3342156454
## Themeshared.humanity_q4 -0.7841275749
## Themesocial.awareness_q4 -1.5198325644
## Themesocial.connectedness_q4 -18.8129024098
## Themesocial.support_q4 -0.3342170092
## Themesolidarity_q4 -0.0000034829
## Themestrive.for.socio.economic.equality_q4 -0.3342175365
## Themesympathy...compassion_q4 -0.3342150329
## FieldSC -1.7090779764
## Themebalance.of.personal...others.interest_q4:FieldSC 0.7841306175
## Themebipartisanship.and.international.cooperation_q4:FieldSC 1.0624490544
## Themecontext.sensitivity_q4:FieldSC 2.6899056327
## Themecritical.thinking_q4:FieldSC 1.9541948230
## Themeevidence.based.decision.making_q4:FieldSC 2.2481008069
## Themegratitude_q4:FieldSC -18.8980273910
## Themeimprove.communication_q4:FieldSC 20.3082827898
## Themeliving.in.the.moment_q4:FieldSC -19.0669079926
## Themelong.term.orientation_q4:FieldSC 1.9810180358
## Themeoptimism...positivity_q4:FieldSC 19.5409856874
## Themepatience_q4:FieldSC 1.5198549220
## Themeperspective.taking_q4:FieldSC 0.0000009766
## Themepolitical.engagement...structural.change_q4:FieldSC 2.0837739582
## Themeself.distancing_q4:FieldSC 0.3341996348
## Themeself.reflection.on.what.s.important_q4:FieldSC 1.0624587204
## Themeshared.humanity_q4:FieldSC 1.9541980444
## Themesocial.awareness_q4:FieldSC 2.6899043173
## Themesocial.connectedness_q4:FieldSC 20.7939038295
## Themesocial.support_q4:FieldSC 1.5042896521
## Themesolidarity_q4:FieldSC 0.7282413330
## Themestrive.for.socio.economic.equality_q4:FieldSC 0.3342243759
## Themesympathy...compassion_q4:FieldSC 2.3152160819
## Std. Error
## (Intercept) 0.5455428131
## Themebalance.of.personal...others.interest_q4 0.9171108786
## Themebipartisanship.and.international.cooperation_q4 0.8224379428
## Themecontext.sensitivity_q4 1.1572750031
## Themecritical.thinking_q4 0.9171111016
## Themeevidence.based.decision.making_q4 1.1572823736
## Themegratitude_q4 1.1572699341
## Themeimprove.communication_q4 5575.0964795414
## Themeliving.in.the.moment_q4 0.9171122281
## Themelong.term.orientation_q4 0.7715162092
## Themeoptimism...positivity_q4 5574.9850130566
## Themepatience_q4 1.1572791180
## Themeperspective.taking_q4 0.7715153847
## Themepolitical.engagement...structural.change_q4 0.7400116058
## Themeself.distancing_q4 0.8224374198
## Themeself.reflection.on.what.s.important_q4 0.8224389182
## Themeshared.humanity_q4 0.9171120150
## Themesocial.awareness_q4 1.1572727738
## Themesocial.connectedness_q4 5575.4158272736
## Themesocial.support_q4 0.8224391569
## Themesolidarity_q4 0.7715145019
## Themestrive.for.socio.economic.equality_q4 0.8224392492
## Themesympathy...compassion_q4 0.8224388110
## FieldSC 1.1541662075
## Themebalance.of.personal...others.interest_q4:FieldSC 1.7058869730
## Themebipartisanship.and.international.cooperation_q4:FieldSC 1.4988665265
## Themecontext.sensitivity_q4:FieldSC 1.6565444480
## Themecritical.thinking_q4:FieldSC 1.4986480206
## Themeevidence.based.decision.making_q4:FieldSC 1.7057245869
## Themegratitude_q4:FieldSC 26688.1714761375
## Themeimprove.communication_q4:FieldSC 5575.0965981891
## Themeliving.in.the.moment_q4:FieldSC 20101.8553251498
## Themelong.term.orientation_q4:FieldSC 1.3557482247
## Themeoptimism...positivity_q4:FieldSC 5574.9851538818
## Themepatience_q4:FieldSC 1.8461455824
## Themeperspective.taking_q4:FieldSC 1.6322408690
## Themepolitical.engagement...structural.change_q4:FieldSC 1.3238407414
## Themeself.distancing_q4:FieldSC 1.6569175745
## Themeself.reflection.on.what.s.important_q4:FieldSC 1.4988664279
## Themeshared.humanity_q4:FieldSC 1.4986486239
## Themesocial.awareness_q4:FieldSC 1.6565425267
## Themesocial.connectedness_q4:FieldSC 5575.4159387286
## Themesocial.support_q4:FieldSC 1.4426568451
## Themesolidarity_q4:FieldSC 1.4715406372
## Themestrive.for.socio.economic.equality_q4:FieldSC 1.6569143195
## Themesympathy...compassion_q4:FieldSC 1.3853597534
## z value Pr(>|z|)
## (Intercept) -3.040 0.00237
## Themebalance.of.personal...others.interest_q4 -0.855 0.39256
## Themebipartisanship.and.international.cooperation_q4 -0.406 0.68447
## Themecontext.sensitivity_q4 -1.313 0.18909
## Themecritical.thinking_q4 -0.855 0.39255
## Themeevidence.based.decision.making_q4 -1.313 0.18908
## Themegratitude_q4 -1.313 0.18909
## Themeimprove.communication_q4 -0.003 0.99731
## Themeliving.in.the.moment_q4 -0.855 0.39255
## Themelong.term.orientation_q4 0.000 0.99998
## Themeoptimism...positivity_q4 -0.003 0.99731
## Themepatience_q4 -1.313 0.18908
## Themeperspective.taking_q4 0.000 0.99999
## Themepolitical.engagement...structural.change_q4 0.367 0.71328
## Themeself.distancing_q4 -0.406 0.68448
## Themeself.reflection.on.what.s.important_q4 -0.406 0.68447
## Themeshared.humanity_q4 -0.855 0.39255
## Themesocial.awareness_q4 -1.313 0.18909
## Themesocial.connectedness_q4 -0.003 0.99731
## Themesocial.support_q4 -0.406 0.68447
## Themesolidarity_q4 0.000 1.00000
## Themestrive.for.socio.economic.equality_q4 -0.406 0.68447
## Themesympathy...compassion_q4 -0.406 0.68447
## FieldSC -1.481 0.13866
## Themebalance.of.personal...others.interest_q4:FieldSC 0.460 0.64576
## Themebipartisanship.and.international.cooperation_q4:FieldSC 0.709 0.47843
## Themecontext.sensitivity_q4:FieldSC 1.624 0.10442
## Themecritical.thinking_q4:FieldSC 1.304 0.19224
## Themeevidence.based.decision.making_q4:FieldSC 1.318 0.18751
## Themegratitude_q4:FieldSC -0.001 0.99944
## Themeimprove.communication_q4:FieldSC 0.004 0.99709
## Themeliving.in.the.moment_q4:FieldSC -0.001 0.99924
## Themelong.term.orientation_q4:FieldSC 1.461 0.14396
## Themeoptimism...positivity_q4:FieldSC 0.004 0.99720
## Themepatience_q4:FieldSC 0.823 0.41036
## Themeperspective.taking_q4:FieldSC 0.000 1.00000
## Themepolitical.engagement...structural.change_q4:FieldSC 1.574 0.11548
## Themeself.distancing_q4:FieldSC 0.202 0.84015
## Themeself.reflection.on.what.s.important_q4:FieldSC 0.709 0.47842
## Themeshared.humanity_q4:FieldSC 1.304 0.19224
## Themesocial.awareness_q4:FieldSC 1.624 0.10442
## Themesocial.connectedness_q4:FieldSC 0.004 0.99702
## Themesocial.support_q4:FieldSC 1.043 0.29708
## Themesolidarity_q4:FieldSC 0.495 0.62068
## Themestrive.for.socio.economic.equality_q4:FieldSC 0.202 0.84014
## Themesympathy...compassion_q4:FieldSC 1.671 0.09468
##
## (Intercept) **
## Themebalance.of.personal...others.interest_q4
## Themebipartisanship.and.international.cooperation_q4
## Themecontext.sensitivity_q4
## Themecritical.thinking_q4
## Themeevidence.based.decision.making_q4
## Themegratitude_q4
## Themeimprove.communication_q4
## Themeliving.in.the.moment_q4
## Themelong.term.orientation_q4
## Themeoptimism...positivity_q4
## Themepatience_q4
## Themeperspective.taking_q4
## Themepolitical.engagement...structural.change_q4
## Themeself.distancing_q4
## Themeself.reflection.on.what.s.important_q4
## Themeshared.humanity_q4
## Themesocial.awareness_q4
## Themesocial.connectedness_q4
## Themesocial.support_q4
## Themesolidarity_q4
## Themestrive.for.socio.economic.equality_q4
## Themesympathy...compassion_q4
## FieldSC
## Themebalance.of.personal...others.interest_q4:FieldSC
## Themebipartisanship.and.international.cooperation_q4:FieldSC
## Themecontext.sensitivity_q4:FieldSC
## Themecritical.thinking_q4:FieldSC
## Themeevidence.based.decision.making_q4:FieldSC
## Themegratitude_q4:FieldSC
## Themeimprove.communication_q4:FieldSC
## Themeliving.in.the.moment_q4:FieldSC
## Themelong.term.orientation_q4:FieldSC
## Themeoptimism...positivity_q4:FieldSC
## Themepatience_q4:FieldSC
## Themeperspective.taking_q4:FieldSC
## Themepolitical.engagement...structural.change_q4:FieldSC
## Themeself.distancing_q4:FieldSC
## Themeself.reflection.on.what.s.important_q4:FieldSC
## Themeshared.humanity_q4:FieldSC
## Themesocial.awareness_q4:FieldSC
## Themesocial.connectedness_q4:FieldSC
## Themesocial.support_q4:FieldSC
## Themesolidarity_q4:FieldSC
## Themestrive.for.socio.economic.equality_q4:FieldSC
## Themesympathy...compassion_q4:FieldSC .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 9.2390 1 0.002369 **
## Theme 11.1122 22 0.973111
## Field 2.1927 1 0.138662
## Theme:Field 11.9486 22 0.958432
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
9.5 Frequencies by Cognitive Style: Dialectical Thinking
9.5.1 Is there a difference in themes mentioned between experts who show dialecticism in their reasoning about societal change vs. those who do not invoke dialectism?
It appears that people invoking dialecticism in their reasoning were more likely to raise the themes of perspective-taking, self-distancing, focus on the concept of shared humanity,solidarity, and optimism/positivity compared to those who did not show dialecticism.
9.5.2 Is there a difference in Common Wisdom Model themes between dialectical experts vs. those who do not invoke dialectism?
No group difference. We observe a main effect: both groups are sig more likely to favor CWM vs. other themes.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 1.3263 1 0.2495
## type 5.0291 2 0.0809 .
## Dialecticism 0.7579 1 0.3840
## type:Dialecticism 0.2898 2 0.8651
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## contrast estimate SE df z.ratio p.value
## metacog.Q4 - morals.Q4 0.0614 0.207 Inf 0.297 0.9527
## metacog.Q4 - others.Q4 0.9911 0.276 Inf 3.586 0.0010
## morals.Q4 - others.Q4 0.9297 0.279 Inf 3.336 0.0025
##
## Results are averaged over the levels of: Dialecticism
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 7.1546 1 0.007477 **
## type 16.9688 1 0.000038 ***
## Dialecticism 1.3317 1 0.248501
## type:Dialecticism 0.2861 1 0.592737
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Dialecticism = Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.Q4 - others.Q4 1.52 0.368 Inf 4.119 <.0001
##
## Dialecticism = Not Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.Q4 - others.Q4 1.79 0.360 Inf 4.977 <.0001
##
## Results are given on the log (not the response) scale.
##
## Pearson's Chi-squared test
##
## data: xtabs(Count ~ FamiliarWisdom + Theme, data = Q4.data.W.CWM)
## X-squared = 5.5395, df = 4, p-value = 0.2363
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 2.4232 1 0.11955
## type 8.8358 2 0.01206 *
## FamiliarWisdom 3.2097 1 0.07320 .
## type:FamiliarWisdom 4.5176 2 0.10448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## FamiliarWisdom = No:
## contrast estimate SE df z.ratio p.value
## metacog.Q4 - morals.Q4 -0.177 0.243 Inf -0.727 0.7477
## metacog.Q4 - others.Q4 0.726 0.315 Inf 2.308 0.0547
## morals.Q4 - others.Q4 0.903 0.306 Inf 2.950 0.0089
##
## FamiliarWisdom = Yes:
## contrast estimate SE df z.ratio p.value
## metacog.Q4 - morals.Q4 0.693 0.408 Inf 1.698 0.2060
## metacog.Q4 - others.Q4 1.792 0.624 Inf 2.873 0.0113
## morals.Q4 - others.Q4 1.099 0.667 Inf 1.648 0.2256
##
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
9.6 MCA
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.12 11.60 11.60
## dim 2 0.09 8.82 20.43
## dim 3 0.08 7.96 28.39
## dim 4 0.07 7.43 35.82
## dim 5 0.07 6.75 42.57
## dim 6 0.06 6.38 48.95
## dim 7 0.06 6.04 54.99
## dim 8 0.05 5.04 60.03
## dim 9 0.05 4.98 65.01
## dim 10 0.05 4.60 69.61
## dim 11 0.04 4.08 73.69
## dim 12 0.04 3.75 77.44
## dim 13 0.03 3.40 80.84
## dim 14 0.03 3.27 84.11
## dim 15 0.03 3.03 87.14
## dim 16 0.02 2.45 89.59
## dim 17 0.02 2.36 91.95
## dim 18 0.02 1.84 93.79
## dim 19 0.02 1.71 95.50
## dim 20 0.01 1.50 97.00
## dim 21 0.01 1.25 98.25
## dim 22 0.01 0.99 99.24
## dim 23 0.01 0.76 100.00
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Social Awareness_0 0.00 0.06 0.00 0.20 0.01
## Social Awareness_1 0.00 0.06 0.00 0.20 0.01
## Balance Diverse Interests_0 0.01 0.00 0.41 0.01 0.14
## Balance Diverse Interests_1 0.01 0.00 0.41 0.01 0.14
## Solidarity_0 0.03 0.02 0.16 0.18 0.05
## Solidarity_1 0.03 0.02 0.16 0.18 0.05
## Context Sensitivity_0 0.01 0.09 0.03 0.00 0.02
## Context Sensitivity_1 0.01 0.09 0.03 0.00 0.02
## Polit.Cooperation_0 0.17 0.23 0.00 0.00 0.01
## Polit.Cooperation_1 0.17 0.23 0.00 0.00 0.01
## Critical Thinking_0 0.06 0.01 0.03 0.03 0.19
## Critical Thinking_1 0.06 0.01 0.03 0.03 0.19
## Evidence-based Judgement_0 0.08 0.15 0.00 0.01 0.23
## Evidence-based Judgement_1 0.08 0.15 0.00 0.01 0.23
## Gratitude_0 0.29 0.22 0.02 0.03 0.10
## Gratitude_1 0.29 0.22 0.02 0.03 0.10
## Optimism/Positivity_0 0.00 0.02 0.07 0.00 0.00
## Optimism/Positivity_1 0.00 0.02 0.07 0.00 0.00
## Improved Communication_0 0.01 0.00 0.04 0.10 0.05
## Improved Communication_1 0.01 0.00 0.04 0.10 0.05
## Long-term Orientation_0 0.27 0.29 0.04 0.00 0.02
## Long-term Orientation_1 0.27 0.29 0.04 0.00 0.02
## Social Support_0 0.01 0.08 0.10 0.16 0.01
## Social Support_1 0.01 0.08 0.10 0.16 0.01
## Social Connectedness_0 0.03 0.03 0.08 0.05 0.03
## Social Connectedness_1 0.03 0.03 0.08 0.05 0.03
## Acknowledge Uncertainty_0 0.53 0.15 0.00 0.01 0.00
## Acknowledge Uncertainty_1 0.53 0.15 0.00 0.01 0.00
## Live in the Moment_0 0.47 0.26 0.01 0.03 0.06
## Live in the Moment_1 0.47 0.26 0.01 0.03 0.06
## Patience_0 0.15 0.29 0.01 0.01 0.10
## Patience_1 0.15 0.29 0.01 0.01 0.10
## Perspective-taking_0 0.00 0.00 0.19 0.16 0.02
## Perspective-taking_1 0.00 0.00 0.19 0.16 0.02
## What's Important?_0 0.23 0.01 0.04 0.00 0.09
## What's Important?_1 0.23 0.01 0.04 0.00 0.09
## Shared Humanity_0 0.00 0.01 0.04 0.03 0.04
## Shared Humanity_1 0.00 0.01 0.04 0.03 0.04
## Socio-econ Equality_0 0.03 0.01 0.01 0.24 0.23
## Socio-econ Equality_1 0.03 0.01 0.01 0.24 0.23
## Sympathy&Compassion_0 0.10 0.00 0.05 0.43 0.00
## Sympathy&Compassion_1 0.10 0.00 0.05 0.43 0.00
## Polit.Structural Change_0 0.20 0.10 0.10 0.02 0.03
## Polit.Structural Change_1 0.20 0.10 0.10 0.02 0.03
## Self-distancing_0 0.00 0.00 0.41 0.00 0.11
## Self-distancing_1 0.00 0.00 0.41 0.00 0.11
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Social Awareness_0 0.01 0.23 0.01 0.87 0.03
## Social Awareness_1 0.17 2.94 0.15 11.10 0.45
## Balance Diverse Interests_0 0.01 0.01 1.22 0.05 0.49
## Balance Diverse Interests_1 0.24 0.23 21.08 0.82 8.52
## Solidarity_0 0.13 0.09 0.92 1.13 0.37
## Solidarity_1 1.02 0.72 7.55 9.24 3.01
## Context Sensitivity_0 0.02 0.32 0.12 0.02 0.10
## Context Sensitivity_1 0.21 4.03 1.49 0.22 1.27
## Polit.Cooperation_0 0.57 1.02 0.01 0.00 0.08
## Polit.Cooperation_1 5.73 10.21 0.12 0.00 0.85
## Critical Thinking_0 0.21 0.04 0.17 0.16 1.12
## Critical Thinking_1 2.11 0.45 1.71 1.56 11.21
## Evidence-based Judgement_0 0.15 0.40 0.01 0.03 0.82
## Evidence-based Judgement_1 2.66 6.99 0.12 0.47 14.27
## Gratitude_0 0.20 0.19 0.01 0.03 0.12
## Gratitude_1 10.78 10.46 0.80 1.75 6.52
## Optimism/Positivity_0 0.00 0.03 0.14 0.00 0.01
## Optimism/Positivity_1 0.04 0.93 3.66 0.02 0.23
## Improved Communication_0 0.02 0.01 0.17 0.44 0.22
## Improved Communication_1 0.23 0.11 2.11 5.65 2.76
## Long-term Orientation_0 1.84 2.58 0.40 0.03 0.26
## Long-term Orientation_1 8.27 11.60 1.80 0.15 1.15
## Social Support_0 0.03 0.43 0.60 1.01 0.07
## Social Support_1 0.21 3.55 4.89 8.23 0.56
## Social Connectedness_0 0.12 0.17 0.45 0.30 0.20
## Social Connectedness_1 0.98 1.38 3.66 2.46 1.66
## Acknowledge Uncertainty_0 1.79 0.66 0.00 0.06 0.01
## Acknowledge Uncertainty_1 17.90 6.61 0.01 0.63 0.13
## Live in the Moment_0 0.64 0.47 0.02 0.06 0.14
## Live in the Moment_1 17.02 12.50 0.43 1.64 3.62
## Patience_0 0.20 0.53 0.01 0.03 0.22
## Patience_1 5.36 14.00 0.35 0.67 5.91
## Perspective-taking_0 0.00 0.00 0.96 0.84 0.12
## Perspective-taking_1 0.01 0.01 9.60 8.40 1.22
## What's Important?_0 0.80 0.04 0.18 0.00 0.54
## What's Important?_1 8.00 0.41 1.84 0.02 5.45
## Shared Humanity_0 0.01 0.04 0.18 0.14 0.22
## Shared Humanity_1 0.13 0.43 1.81 1.35 2.22
## Socio-econ Equality_0 0.08 0.03 0.02 1.01 1.09
## Socio-econ Equality_1 1.05 0.39 0.27 12.85 13.84
## Sympathy&Compassion_0 0.61 0.01 0.45 4.14 0.03
## Sympathy&Compassion_1 3.11 0.04 2.28 21.15 0.15
## Polit.Structural Change_0 1.73 1.12 1.35 0.30 0.42
## Polit.Structural Change_1 5.59 3.61 4.36 0.96 1.37
## Self-distancing_0 0.00 0.00 1.64 0.00 0.50
## Self-distancing_1 0.02 0.00 20.87 0.02 6.43
Similar to prior results, we can address the question of diversity by examining the degree to which scores across themes are reducible to common dimensions, using MCA.
It appears that 10 components is as good a start to account for 23 themes for Question 4 (wisdom against neg consequences), as any other. Once again, the scree plot line is pretty flat after the first dimension.
Again, keep in mind that reducing 23 items to 10 components is not parsimonious. Moreover, when we reduce the items to 10 components, the first component explains only 11.6 % of the variance, and in total 10 components explain 70% of variance.
Given that each theme by default explains 4.4% of the variance (1/23), this is not much.
Furthermore, each of these components is largely based on 1-2 items (cos2 > .4).
In short, MCA shows substantial diversity.
9.7 Network Graph
Even after removing negligible correlations (r < .17), cluster analyses on top of the network graphs show four clusters, three of which are strongly inter-related (perspective-taking, balance of diverse interests, and socio-econ equality):
• Four clusters:
• Context-sensitivity & perspective-taking
• Meta-cognition : balance, self-distancing, focus on the big picture shared humanity
• Political engagement and structural change, cooperation, as well as fight against inequality, linked with patience /long-term focus
• Psych well-being enhancement: Gratitude, acknowledge uncertainty and focus on the present
Balance of diverse interests appears in the center of everything, connecting to other themes mentioned by experts.
9.8 Convergence vs. divergence of themes over time
Once again, focus on meta-cognition consistently remains the most frequent recommendation over time and in fact, increases in importance over time.
As with wisdom to sustain positive change (Q2), discussion of societal strategies for wisdom against negative changes is less prevalent over time, whereas prosocial tendencies becoming relatively more prevant over time!
One can post-hoc speculate about it. It may be due to greater fatigue and U.S. election, with topics like solidarity becoming more important and focus becoming increasingly within-country centric and less about international cooperation (which would be captured by societal theme). This said both societal and prosocial themes tap into the same general foundation of wisdom - moral aspirations (Grossmannn et al., 2020) - it captures both prosocial concerns on the interpersonal level and broader societal concerns with bipartisanship and the common good.
10 Wisdom Now
10.1 Summary
We identified 24 distinct categories.
Except for four themes, categories were mentioned by less than 10% of the interviewees.
Only two theme was mentioned by at least ten people: Agency & Control (18%) and Social connectedness (25%).
Once again, seven categories were meta-cognitive, whereas 3 were (pro)social and one was societal.
10.2 Frequency Chart
10.3 How many themes per person?
Did people just report 1-2 themes or a great number of themes? How do such trends vary across people?
Most people reported 1-2 themes, with the max being 4 themes mentioned by 4 people.
The majority of people mention only one or two themes here. The median was two themes (as indicated by vertical red line). One-fifth mentioned three themes, and only 3 people mentioned 4 themes (and one person mentioned five themes).
10.4 Frequencies by Gender and Field
Once again, it is not surprising that wisdom experts mention meta-cognitive and moral considerations. The question is whether scientists without much familiarity with the science of wisdom would mention similar constructs for this question, too. It appears that is the case, with non-wisdom experts emphasizing meta-cognitive categories such as sympathy and compassion, long-term orientation, context sensitivity, critical thinking and acknowledging uncertainty, along with moral aspirations about solidarity, and paying greater attention to one’s family and relationship. In fact, the latter categories were strongly prevalent among non-wisdom experts.
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * FamiliarWisdom + (1 | Name)
## Data: Q5.data.Famil.long
##
## AIC BIC logLik deviance df.resid
## 768.7 1022.8 -335.4 670.7 1271
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6814 -0.3288 -0.2265 -0.1581 6.3246
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.0000000007679 0.00002771
## Number of obs: 1320, groups: Name, 55
##
## Fixed effects:
## Estimate
## (Intercept) -2.22460395
## Themeagency...control_q5 0.64415077
## Themebalance.of.personal...others.interest_q5 -1.46429305
## Themebipartisanship.and.international.cooperation_q5 -1.46425344
## Themeclear.governmental.communication_q5 -17.28424285
## Themecritical.thinking_q5 -0.00002290
## Themeembrace.new.tech_q5 -1.46427759
## Themefollow.rules_q5 -0.74581195
## Themeimprove.communication_q5 -1.46427886
## Themelearning.from.the.pandemics_q5 -0.31436823
## Themeliving.in.the.moment_q5 0.25052212
## Themelong.term.orientation_q5 -0.00002146
## Themeoptimism...positivity_q5 0.46101622
## Themepatience_q5 -0.00002302
## Themepersonal.resilience_q5 -0.74581482
## Themeperspective.taking_q5 -0.74581819
## Themeprosocial.behavior_q5 -0.74582630
## Themeself.distancing_q5 -1.46428877
## Themeself.reflection.on.what.is.important_q5 -0.00001497
## Themesocial.connectedness_q5 1.45735118
## Themesolidarity_q5 -0.31436617
## Themestrive.for.socio.economic.equality_q5 -1.46427691
## Themesympathy...compassion_q5 0.46101430
## Themetake.science.seriously_q5 -17.28441055
## FamiliarWisdomYes -0.34037967
## Themeagency...control_q5:FamiliarWisdomYes 0.62155342
## Themebalance.of.personal...others.interest_q5:FamiliarWisdomYes 1.46432921
## Themebipartisanship.and.international.cooperation_q5:FamiliarWisdomYes 2.72994931
## Themeclear.governmental.communication_q5:FamiliarWisdomYes 17.28428240
## Themecritical.thinking_q5:FamiliarWisdomYes 0.00006860
## Themeembrace.new.tech_q5:FamiliarWisdomYes -17.84930035
## Themefollow.rules_q5:FamiliarWisdomYes 1.51903029
## Themeimprove.communication_q5:FamiliarWisdomYes -18.42603775
## Themelearning.from.the.pandemics_q5:FamiliarWisdomYes 1.08759119
## Themeliving.in.the.moment_q5:FamiliarWisdomYes -20.21381089
## Themelong.term.orientation_q5:FamiliarWisdomYes 1.26572140
## Themeoptimism...positivity_q5:FamiliarWisdomYes -0.46098525
## Themepatience_q5:FamiliarWisdomYes 0.77325018
## Themepersonal.resilience_q5:FamiliarWisdomYes 1.51904728
## Themeperspective.taking_q5:FamiliarWisdomYes 1.51904302
## Themeprosocial.behavior_q5:FamiliarWisdomYes -19.30032421
## Themeself.distancing_q5:FamiliarWisdomYes 2.72999291
## Themeself.reflection.on.what.is.important_q5:FamiliarWisdomYes 0.77322944
## Themesocial.connectedness_q5:FamiliarWisdomYes -1.45731922
## Themesolidarity_q5:FamiliarWisdomYes 1.08759274
## Themestrive.for.socio.economic.equality_q5:FamiliarWisdomYes -18.16808611
## Themesympathy...compassion_q5:FamiliarWisdomYes -20.54630544
## Themetake.science.seriously_q5:FamiliarWisdomYes 17.28444026
## Std. Error
## (Intercept) 0.52632942
## Themeagency...control_q5 0.67029239
## Themebalance.of.personal...others.interest_q5 1.14106957
## Themebipartisanship.and.international.cooperation_q5 1.14105265
## Themeclear.governmental.communication_q5 2690.91721776
## Themecritical.thinking_q5 0.74434563
## Themeembrace.new.tech_q5 1.14106296
## Themefollow.rules_q5 0.89591538
## Themeimprove.communication_q5 1.14106351
## Themelearning.from.the.pandemics_q5 0.79791683
## Themeliving.in.the.moment_q5 0.71049319
## Themelong.term.orientation_q5 0.74434542
## Themeoptimism...positivity_q5 0.68721222
## Themepatience_q5 0.74434565
## Themepersonal.resilience_q5 0.89591614
## Themeperspective.taking_q5 0.89591703
## Themeprosocial.behavior_q5 0.89591918
## Themeself.distancing_q5 1.14106774
## Themeself.reflection.on.what.is.important_q5 0.74434444
## Themesocial.connectedness_q5 0.62422746
## Themesolidarity_q5 0.79791643
## Themestrive.for.socio.economic.equality_q5 1.14106267
## Themesympathy...compassion_q5 0.68721241
## Themetake.science.seriously_q5 2691.14286470
## FamiliarWisdomYes 1.16360533
## Themeagency...control_q5:FamiliarWisdomYes 1.39659878
## Themebalance.of.personal...others.interest_q5:FamiliarWisdomYes 1.85900936
## Themebipartisanship.and.international.cooperation_q5:FamiliarWisdomYes 1.67427579
## Themeclear.governmental.communication_q5:FamiliarWisdomYes 2690.91761797
## Themecritical.thinking_q5:FamiliarWisdomYes 1.64557517
## Themeembrace.new.tech_q5:FamiliarWisdomYes 15059.31657278
## Themefollow.rules_q5:FamiliarWisdomYes 1.56938040
## Themeimprove.communication_q5:FamiliarWisdomYes 20092.89312844
## Themelearning.from.the.pandemics_q5:FamiliarWisdomYes 1.51557243
## Themeliving.in.the.moment_q5:FamiliarWisdomYes 20839.54232245
## Themelong.term.orientation_q5:FamiliarWisdomYes 1.43361341
## Themeoptimism...positivity_q5:FamiliarWisdomYes 1.62053740
## Themepatience_q5:FamiliarWisdomYes 1.48806493
## Themepersonal.resilience_q5:FamiliarWisdomYes 1.56937895
## Themeperspective.taking_q5:FamiliarWisdomYes 1.56938048
## Themeprosocial.behavior_q5:FamiliarWisdomYes 21721.07799569
## Themeself.distancing_q5:FamiliarWisdomYes 1.67428548
## Themeself.reflection.on.what.is.important_q5:FamiliarWisdomYes 1.48806610
## Themesocial.connectedness_q5:FamiliarWisdomYes 1.59484790
## Themesolidarity_q5:FamiliarWisdomYes 1.51557173
## Themestrive.for.socio.economic.equality_q5:FamiliarWisdomYes 17661.53969563
## Themesympathy...compassion_q5:FamiliarWisdomYes 22150.35318176
## Themetake.science.seriously_q5:FamiliarWisdomYes 2691.14326488
## z value
## (Intercept) -4.227
## Themeagency...control_q5 0.961
## Themebalance.of.personal...others.interest_q5 -1.283
## Themebipartisanship.and.international.cooperation_q5 -1.283
## Themeclear.governmental.communication_q5 -0.006
## Themecritical.thinking_q5 0.000
## Themeembrace.new.tech_q5 -1.283
## Themefollow.rules_q5 -0.832
## Themeimprove.communication_q5 -1.283
## Themelearning.from.the.pandemics_q5 -0.394
## Themeliving.in.the.moment_q5 0.353
## Themelong.term.orientation_q5 0.000
## Themeoptimism...positivity_q5 0.671
## Themepatience_q5 0.000
## Themepersonal.resilience_q5 -0.832
## Themeperspective.taking_q5 -0.832
## Themeprosocial.behavior_q5 -0.832
## Themeself.distancing_q5 -1.283
## Themeself.reflection.on.what.is.important_q5 0.000
## Themesocial.connectedness_q5 2.335
## Themesolidarity_q5 -0.394
## Themestrive.for.socio.economic.equality_q5 -1.283
## Themesympathy...compassion_q5 0.671
## Themetake.science.seriously_q5 -0.006
## FamiliarWisdomYes -0.293
## Themeagency...control_q5:FamiliarWisdomYes 0.445
## Themebalance.of.personal...others.interest_q5:FamiliarWisdomYes 0.788
## Themebipartisanship.and.international.cooperation_q5:FamiliarWisdomYes 1.631
## Themeclear.governmental.communication_q5:FamiliarWisdomYes 0.006
## Themecritical.thinking_q5:FamiliarWisdomYes 0.000
## Themeembrace.new.tech_q5:FamiliarWisdomYes -0.001
## Themefollow.rules_q5:FamiliarWisdomYes 0.968
## Themeimprove.communication_q5:FamiliarWisdomYes -0.001
## Themelearning.from.the.pandemics_q5:FamiliarWisdomYes 0.718
## Themeliving.in.the.moment_q5:FamiliarWisdomYes -0.001
## Themelong.term.orientation_q5:FamiliarWisdomYes 0.883
## Themeoptimism...positivity_q5:FamiliarWisdomYes -0.284
## Themepatience_q5:FamiliarWisdomYes 0.520
## Themepersonal.resilience_q5:FamiliarWisdomYes 0.968
## Themeperspective.taking_q5:FamiliarWisdomYes 0.968
## Themeprosocial.behavior_q5:FamiliarWisdomYes -0.001
## Themeself.distancing_q5:FamiliarWisdomYes 1.631
## Themeself.reflection.on.what.is.important_q5:FamiliarWisdomYes 0.520
## Themesocial.connectedness_q5:FamiliarWisdomYes -0.914
## Themesolidarity_q5:FamiliarWisdomYes 0.718
## Themestrive.for.socio.economic.equality_q5:FamiliarWisdomYes -0.001
## Themesympathy...compassion_q5:FamiliarWisdomYes -0.001
## Themetake.science.seriously_q5:FamiliarWisdomYes 0.006
## Pr(>|z|)
## (Intercept) 0.0000237
## Themeagency...control_q5 0.3366
## Themebalance.of.personal...others.interest_q5 0.1994
## Themebipartisanship.and.international.cooperation_q5 0.1994
## Themeclear.governmental.communication_q5 0.9949
## Themecritical.thinking_q5 1.0000
## Themeembrace.new.tech_q5 0.1994
## Themefollow.rules_q5 0.4052
## Themeimprove.communication_q5 0.1994
## Themelearning.from.the.pandemics_q5 0.6936
## Themeliving.in.the.moment_q5 0.7244
## Themelong.term.orientation_q5 1.0000
## Themeoptimism...positivity_q5 0.5023
## Themepatience_q5 1.0000
## Themepersonal.resilience_q5 0.4051
## Themeperspective.taking_q5 0.4051
## Themeprosocial.behavior_q5 0.4051
## Themeself.distancing_q5 0.1994
## Themeself.reflection.on.what.is.important_q5 1.0000
## Themesocial.connectedness_q5 0.0196
## Themesolidarity_q5 0.6936
## Themestrive.for.socio.economic.equality_q5 0.1994
## Themesympathy...compassion_q5 0.5023
## Themetake.science.seriously_q5 0.9949
## FamiliarWisdomYes 0.7699
## Themeagency...control_q5:FamiliarWisdomYes 0.6563
## Themebalance.of.personal...others.interest_q5:FamiliarWisdomYes 0.4309
## Themebipartisanship.and.international.cooperation_q5:FamiliarWisdomYes 0.1030
## Themeclear.governmental.communication_q5:FamiliarWisdomYes 0.9949
## Themecritical.thinking_q5:FamiliarWisdomYes 1.0000
## Themeembrace.new.tech_q5:FamiliarWisdomYes 0.9991
## Themefollow.rules_q5:FamiliarWisdomYes 0.3331
## Themeimprove.communication_q5:FamiliarWisdomYes 0.9993
## Themelearning.from.the.pandemics_q5:FamiliarWisdomYes 0.4730
## Themeliving.in.the.moment_q5:FamiliarWisdomYes 0.9992
## Themelong.term.orientation_q5:FamiliarWisdomYes 0.3773
## Themeoptimism...positivity_q5:FamiliarWisdomYes 0.7761
## Themepatience_q5:FamiliarWisdomYes 0.6033
## Themepersonal.resilience_q5:FamiliarWisdomYes 0.3331
## Themeperspective.taking_q5:FamiliarWisdomYes 0.3331
## Themeprosocial.behavior_q5:FamiliarWisdomYes 0.9993
## Themeself.distancing_q5:FamiliarWisdomYes 0.1030
## Themeself.reflection.on.what.is.important_q5:FamiliarWisdomYes 0.6033
## Themesocial.connectedness_q5:FamiliarWisdomYes 0.3608
## Themesolidarity_q5:FamiliarWisdomYes 0.4730
## Themestrive.for.socio.economic.equality_q5:FamiliarWisdomYes 0.9992
## Themesympathy...compassion_q5:FamiliarWisdomYes 0.9993
## Themetake.science.seriously_q5:FamiliarWisdomYes 0.9949
##
## (Intercept) ***
## Themeagency...control_q5
## Themebalance.of.personal...others.interest_q5
## Themebipartisanship.and.international.cooperation_q5
## Themeclear.governmental.communication_q5
## Themecritical.thinking_q5
## Themeembrace.new.tech_q5
## Themefollow.rules_q5
## Themeimprove.communication_q5
## Themelearning.from.the.pandemics_q5
## Themeliving.in.the.moment_q5
## Themelong.term.orientation_q5
## Themeoptimism...positivity_q5
## Themepatience_q5
## Themepersonal.resilience_q5
## Themeperspective.taking_q5
## Themeprosocial.behavior_q5
## Themeself.distancing_q5
## Themeself.reflection.on.what.is.important_q5
## Themesocial.connectedness_q5 *
## Themesolidarity_q5
## Themestrive.for.socio.economic.equality_q5
## Themesympathy...compassion_q5
## Themetake.science.seriously_q5
## FamiliarWisdomYes
## Themeagency...control_q5:FamiliarWisdomYes
## Themebalance.of.personal...others.interest_q5:FamiliarWisdomYes
## Themebipartisanship.and.international.cooperation_q5:FamiliarWisdomYes
## Themeclear.governmental.communication_q5:FamiliarWisdomYes
## Themecritical.thinking_q5:FamiliarWisdomYes
## Themeembrace.new.tech_q5:FamiliarWisdomYes
## Themefollow.rules_q5:FamiliarWisdomYes
## Themeimprove.communication_q5:FamiliarWisdomYes
## Themelearning.from.the.pandemics_q5:FamiliarWisdomYes
## Themeliving.in.the.moment_q5:FamiliarWisdomYes
## Themelong.term.orientation_q5:FamiliarWisdomYes
## Themeoptimism...positivity_q5:FamiliarWisdomYes
## Themepatience_q5:FamiliarWisdomYes
## Themepersonal.resilience_q5:FamiliarWisdomYes
## Themeperspective.taking_q5:FamiliarWisdomYes
## Themeprosocial.behavior_q5:FamiliarWisdomYes
## Themeself.distancing_q5:FamiliarWisdomYes
## Themeself.reflection.on.what.is.important_q5:FamiliarWisdomYes
## Themesocial.connectedness_q5:FamiliarWisdomYes
## Themesolidarity_q5:FamiliarWisdomYes
## Themestrive.for.socio.economic.equality_q5:FamiliarWisdomYes
## Themesympathy...compassion_q5:FamiliarWisdomYes
## Themetake.science.seriously_q5:FamiliarWisdomYes
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 17.8645 1 0.00002372 ***
## Theme 40.4132 23 0.01381 *
## FamiliarWisdom 0.0856 1 0.76989
## Theme:FamiliarWisdom 13.5623 23 0.93872
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: Presence ~ Theme * Field + (1 | Name)
## Data: Q5.data.Famil.long
##
## AIC BIC logLik deviance df.resid
## 772.3 1026.4 -337.2 674.3 1271
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6236 -0.3693 -0.2041 -0.1857 5.3852
##
## Random effects:
## Groups Name Variance Std.Dev.
## Name (Intercept) 0.0000000002575 0.00001605
## Number of obs: 1320, groups: Name, 55
##
## Fixed effects:
## Estimate
## (Intercept) -19.47679346
## Themeagency...control_q5 17.81857358
## Themebalance.of.personal...others.interest_q5 0.00022982
## Themebipartisanship.and.international.cooperation_q5 17.03444339
## Themeclear.governmental.communication_q5 0.00009992
## Themecritical.thinking_q5 16.29874340
## Themeembrace.new.tech_q5 0.00028471
## Themefollow.rules_q5 16.29876397
## Themeimprove.communication_q5 -0.00030429
## Themelearning.from.the.pandemics_q5 17.81856280
## Themeliving.in.the.moment_q5 17.81856467
## Themelong.term.orientation_q5 18.09049789
## Themeoptimism...positivity_q5 17.48435988
## Themepatience_q5 17.03445145
## Themepersonal.resilience_q5 17.03444733
## Themeperspective.taking_q5 16.29870813
## Themeprosocial.behavior_q5 16.29873215
## Themeself.distancing_q5 17.48435812
## Themeself.reflection.on.what.is.important_q5 17.81856271
## Themesocial.connectedness_q5 18.53232820
## Themesolidarity_q5 16.29870395
## Themestrive.for.socio.economic.equality_q5 16.29874859
## Themesympathy...compassion_q5 17.81857033
## Themetake.science.seriously_q5 16.29873161
## FieldSC 17.86735300
## Themeagency...control_q5:FieldSC -17.59543422
## Themebalance.of.personal...others.interest_q5:FieldSC -1.02984020
## Themebipartisanship.and.international.cooperation_q5:FieldSC -18.06405923
## Themeclear.governmental.communication_q5:FieldSC -1.75795450
## Themecritical.thinking_q5:FieldSC -16.56110423
## Themeembrace.new.tech_q5:FieldSC -1.75813995
## Themefollow.rules_q5:FieldSC -16.88654846
## Themeimprove.communication_q5:FieldSC -1.75754431
## Themelearning.from.the.pandemics_q5:FieldSC -19.57642088
## Themeliving.in.the.moment_q5:FieldSC -19.57640917
## Themelong.term.orientation_q5:FieldSC -19.12011503
## Themeoptimism...positivity_q5:FieldSC -17.74671647
## Themepatience_q5:FieldSC -17.29680840
## Themepersonal.resilience_q5:FieldSC -18.06406261
## Themeperspective.taking_q5:FieldSC -16.88648604
## Themeprosocial.behavior_q5:FieldSC -18.05657278
## Themeself.distancing_q5:FieldSC -19.24221069
## Themeself.reflection.on.what.is.important_q5:FieldSC -18.84817585
## Themesocial.connectedness_q5:FieldSC -18.11247211
## Themesolidarity_q5:FieldSC -16.56106076
## Themestrive.for.socio.economic.equality_q5:FieldSC -37.91676526
## Themesympathy...compassion_q5:FieldSC -18.84819204
## Themetake.science.seriously_q5:FieldSC -38.08054098
## Std. Error
## (Intercept) 3391.26362112
## Themeagency...control_q5 3391.26366500
## Themebalance.of.personal...others.interest_q5 4795.69770930
## Themebipartisanship.and.international.cooperation_q5 3391.26370125
## Themeclear.governmental.communication_q5 4795.85345954
## Themecritical.thinking_q5 3391.26377470
## Themeembrace.new.tech_q5 4795.63192329
## Themefollow.rules_q5 3391.26377469
## Themeimprove.communication_q5 4796.33812304
## Themelearning.from.the.pandemics_q5 3391.26366500
## Themeliving.in.the.moment_q5 3391.26366500
## Themelong.term.orientation_q5 3391.26365798
## Themeoptimism...positivity_q5 3391.26367696
## Themepatience_q5 3391.26370125
## Themepersonal.resilience_q5 3391.26370125
## Themeperspective.taking_q5 3391.26377470
## Themeprosocial.behavior_q5 3391.26377470
## Themeself.distancing_q5 3391.26367697
## Themeself.reflection.on.what.is.important_q5 3391.26366500
## Themesocial.connectedness_q5 3391.26365037
## Themesolidarity_q5 3391.26377470
## Themestrive.for.socio.economic.equality_q5 3391.26377470
## Themesympathy...compassion_q5 3391.26366500
## Themetake.science.seriously_q5 3391.26377470
## FieldSC 3391.26365650
## Themeagency...control_q5:FieldSC 3391.26373110
## Themebalance.of.personal...others.interest_q5:FieldSC 4795.69779017
## Themebipartisanship.and.international.cooperation_q5:FieldSC 3391.26381562
## Themeclear.governmental.communication_q5:FieldSC 4795.85359241
## Themecritical.thinking_q5:FieldSC 3391.26385261
## Themeembrace.new.tech_q5:FieldSC 4795.63205617
## Themefollow.rules_q5:FieldSC 3391.26386469
## Themeimprove.communication_q5:FieldSC 4796.33825590
## Themelearning.from.the.pandemics_q5:FieldSC 3391.26385290
## Themeliving.in.the.moment_q5:FieldSC 3391.26385290
## Themelong.term.orientation_q5:FieldSC 3391.26377235
## Themeoptimism...positivity_q5:FieldSC 3391.26375488
## Themepatience_q5:FieldSC 3391.26377916
## Themepersonal.resilience_q5:FieldSC 3391.26381562
## Themeperspective.taking_q5:FieldSC 3391.26386469
## Themeprosocial.behavior_q5:FieldSC 3391.26396260
## Themeself.distancing_q5:FieldSC 3391.26386487
## Themeself.reflection.on.what.is.important_q5:FieldSC 3391.26377937
## Themesocial.connectedness_q5:FieldSC 3391.26371323
## Themesolidarity_q5:FieldSC 3391.26385262
## Themestrive.for.socio.economic.equality_q5:FieldSC 20476.55694605
## Themesympathy...compassion_q5:FieldSC 3391.26377937
## Themetake.science.seriously_q5:FieldSC 22177.99762759
## z value Pr(>|z|)
## (Intercept) -0.006 0.995
## Themeagency...control_q5 0.005 0.996
## Themebalance.of.personal...others.interest_q5 0.000 1.000
## Themebipartisanship.and.international.cooperation_q5 0.005 0.996
## Themeclear.governmental.communication_q5 0.000 1.000
## Themecritical.thinking_q5 0.005 0.996
## Themeembrace.new.tech_q5 0.000 1.000
## Themefollow.rules_q5 0.005 0.996
## Themeimprove.communication_q5 0.000 1.000
## Themelearning.from.the.pandemics_q5 0.005 0.996
## Themeliving.in.the.moment_q5 0.005 0.996
## Themelong.term.orientation_q5 0.005 0.996
## Themeoptimism...positivity_q5 0.005 0.996
## Themepatience_q5 0.005 0.996
## Themepersonal.resilience_q5 0.005 0.996
## Themeperspective.taking_q5 0.005 0.996
## Themeprosocial.behavior_q5 0.005 0.996
## Themeself.distancing_q5 0.005 0.996
## Themeself.reflection.on.what.is.important_q5 0.005 0.996
## Themesocial.connectedness_q5 0.005 0.996
## Themesolidarity_q5 0.005 0.996
## Themestrive.for.socio.economic.equality_q5 0.005 0.996
## Themesympathy...compassion_q5 0.005 0.996
## Themetake.science.seriously_q5 0.005 0.996
## FieldSC 0.005 0.996
## Themeagency...control_q5:FieldSC -0.005 0.996
## Themebalance.of.personal...others.interest_q5:FieldSC 0.000 1.000
## Themebipartisanship.and.international.cooperation_q5:FieldSC -0.005 0.996
## Themeclear.governmental.communication_q5:FieldSC 0.000 1.000
## Themecritical.thinking_q5:FieldSC -0.005 0.996
## Themeembrace.new.tech_q5:FieldSC 0.000 1.000
## Themefollow.rules_q5:FieldSC -0.005 0.996
## Themeimprove.communication_q5:FieldSC 0.000 1.000
## Themelearning.from.the.pandemics_q5:FieldSC -0.006 0.995
## Themeliving.in.the.moment_q5:FieldSC -0.006 0.995
## Themelong.term.orientation_q5:FieldSC -0.006 0.996
## Themeoptimism...positivity_q5:FieldSC -0.005 0.996
## Themepatience_q5:FieldSC -0.005 0.996
## Themepersonal.resilience_q5:FieldSC -0.005 0.996
## Themeperspective.taking_q5:FieldSC -0.005 0.996
## Themeprosocial.behavior_q5:FieldSC -0.005 0.996
## Themeself.distancing_q5:FieldSC -0.006 0.995
## Themeself.reflection.on.what.is.important_q5:FieldSC -0.006 0.996
## Themesocial.connectedness_q5:FieldSC -0.005 0.996
## Themesolidarity_q5:FieldSC -0.005 0.996
## Themestrive.for.socio.economic.equality_q5:FieldSC -0.002 0.999
## Themesympathy...compassion_q5:FieldSC -0.006 0.996
## Themetake.science.seriously_q5:FieldSC -0.002 0.999
## optimizer (Nelder_Mead) convergence code: 4 (failure to converge in 10000 evaluations)
## boundary (singular) fit: see ?isSingular
## failure to converge in 10000 evaluations
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: Presence
## Chisq Df Pr(>Chisq)
## (Intercept) 0.000 1 0.9954
## Theme 19.255 23 0.6863
## Field 0.000 1 0.9958
## Theme:Field 13.968 23 0.9278
10.5 Frequencies by Cognitive Style: Dialectical Thinking
Is there a difference in themes mentioned between experts who show dialecticism in their reasoning about societal change vs. those who do not invoke dialectism?
It appears that people invoking dialecticism in their reasoning were quite similar to those not invoking dialecticism.
There are were a noticeable differences: dialectics more likely to raise the themes of self-distancing, balancing diverse interests, prosocial behavior, clear governmental communication, and following rules compared to those who did not show dialecticism.
10.5.1 Is there a difference in Common Wisdom Model themes between dialectical experts vs. those who do not invoke dialectism?
It appears there is a difference in the direction of dialectical experts being likely to mention moral aspirations and meta-cognition, but it is not significant (p = .0597). No significant differences between experts familiar with wisdom research and those not familiar.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 3.6383 1 0.05646 .
## type 0.3326 2 0.84679
## Dialecticism 0.0775 1 0.78066
## type:Dialecticism 1.0629 2 0.58776
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## contrast estimate SE df z.ratio p.value
## metacog.Q5 - morals.Q5 0.0668 0.251 Inf 0.266 0.9617
## metacog.Q5 - others.Q5 -0.3240 0.229 Inf -1.415 0.3332
## morals.Q5 - others.Q5 -0.3908 0.234 Inf -1.671 0.2163
##
## Results are averaged over the levels of: Dialecticism
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 1.8068 1 0.1789
## type 3.5456 1 0.0597 .
## Dialecticism 0.4158 1 0.5190
## type:Dialecticism 0.9932 1 0.3190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Dialecticism = Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.Q5 - others.Q5 0.531 0.282 Inf 1.883 0.0597
##
## Dialecticism = Not Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.Q5 - others.Q5 0.143 0.268 Inf 0.534 0.5933
##
## Results are given on the log (not the response) scale.
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: xtabs(Count ~ FamiliarWisdom + Theme, data = Q5.data.W.CWM)
## X-squared = 0, df = 1, p-value = 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 8.5259 1 0.003501 **
## type 3.1001 2 0.212232
## FamiliarWisdom 1.0666 1 0.301723
## type:FamiliarWisdom 0.2542 2 0.880648
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## FamiliarWisdom = No:
## contrast estimate SE df z.ratio p.value
## metacog.Q5 - morals.Q5 0.000 0.302 Inf 0.000 1.0000
## metacog.Q5 - others.Q5 -0.405 0.275 Inf -1.473 0.3039
## morals.Q5 - others.Q5 -0.405 0.275 Inf -1.473 0.3039
##
## FamiliarWisdom = Yes:
## contrast estimate SE df z.ratio p.value
## metacog.Q5 - morals.Q5 0.201 0.449 Inf 0.446 0.8960
## metacog.Q5 - others.Q5 -0.167 0.410 Inf -0.408 0.9124
## morals.Q5 - others.Q5 -0.368 0.434 Inf -0.848 0.6731
##
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
## type = metacog.Q5:
## contrast estimate SE df z.ratio p.value
## No - Yes -0.381 0.369 Inf -1.033 0.3017
##
## type = morals.Q5:
## contrast estimate SE df z.ratio p.value
## No - Yes -0.181 0.396 Inf -0.457 0.6479
##
## type = others.Q5:
## contrast estimate SE df z.ratio p.value
## No - Yes -0.143 0.327 Inf -0.437 0.6624
##
## Results are given on the log (not the response) scale.
10.6 MCA
## eigenvalue percentage of variance cumulative percentage of variance
## dim 1 0.10 9.62 9.62
## dim 2 0.08 8.49 18.12
## dim 3 0.08 7.59 25.71
## dim 4 0.07 7.19 32.90
## dim 5 0.07 6.71 39.61
## dim 6 0.06 6.31 45.92
## dim 7 0.06 5.62 51.53
## dim 8 0.05 4.97 56.51
## dim 9 0.05 4.89 61.40
## dim 10 0.05 4.76 66.16
## dim 11 0.04 4.24 70.40
## dim 12 0.04 4.20 74.60
## dim 13 0.04 3.74 78.34
## dim 14 0.03 3.38 81.72
## dim 15 0.03 2.98 84.71
## dim 16 0.03 2.70 87.41
## dim 17 0.03 2.53 89.93
## dim 18 0.02 2.08 92.01
## dim 19 0.02 2.01 94.03
## dim 20 0.02 1.73 95.76
## dim 21 0.01 1.35 97.11
## dim 22 0.01 1.18 98.28
## dim 23 0.01 0.97 99.25
## dim 24 0.01 0.75 100.00
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Balance Diverse Interests_0 0.06 0.02 0.01 0.34 0.12
## Balance Diverse Interests_1 0.06 0.02 0.01 0.34 0.12
## Clear Government\nCommunication_0 0.00 0.00 0.00 0.00 0.00
## Clear Government\nCommunication_1 0.00 0.00 0.00 0.00 0.00
## Solidarity_0 0.00 0.20 0.00 0.18 0.04
## Solidarity_1 0.00 0.20 0.00 0.18 0.04
## Polit.Cooperation_0 0.08 0.49 0.04 0.00 0.04
## Polit.Cooperation_1 0.08 0.49 0.04 0.00 0.04
## Critical Thinking_0 0.07 0.01 0.08 0.27 0.00
## Critical Thinking_1 0.07 0.01 0.08 0.27 0.00
## Embrace New Tech_0 0.00 0.11 0.25 0.03 0.15
## Embrace New Tech_1 0.00 0.11 0.25 0.03 0.15
## Agency/Control_0 0.06 0.02 0.25 0.01 0.09
## Agency/Control_1 0.06 0.02 0.25 0.01 0.09
## Follow Rules_0 0.16 0.23 0.03 0.00 0.00
## Follow Rules_1 0.16 0.23 0.03 0.00 0.00
## Optimism/Positivity_0 0.10 0.25 0.08 0.07 0.09
## Optimism/Positivity_1 0.10 0.25 0.08 0.07 0.09
## Learning from Pandemics_0 0.29 0.24 0.04 0.00 0.01
## Learning from Pandemics_1 0.29 0.24 0.04 0.00 0.01
## Improved Communication_0 0.02 0.00 0.01 0.04 0.03
## Improved Communication_1 0.02 0.00 0.01 0.04 0.03
## Prosocial Behavior_0 0.04 0.00 0.02 0.15 0.13
## Prosocial Behavior_1 0.04 0.00 0.02 0.15 0.13
## Long-term Orientation_0 0.22 0.20 0.09 0.01 0.01
## Long-term Orientation_1 0.22 0.20 0.09 0.01 0.01
## Acknowledge Uncertainty_0 0.03 0.00 0.24 0.02 0.21
## Acknowledge Uncertainty_1 0.03 0.00 0.24 0.02 0.21
## Live in the Moment_0 0.02 0.06 0.37 0.00 0.05
## Live in the Moment_1 0.02 0.06 0.37 0.00 0.05
## Patience_0 0.43 0.08 0.01 0.00 0.08
## Patience_1 0.43 0.08 0.01 0.00 0.08
## Perspective-taking_0 0.02 0.01 0.15 0.00 0.17
## Perspective-taking_1 0.02 0.01 0.15 0.00 0.17
## What's Important?_0 0.06 0.00 0.00 0.02 0.10
## What's Important?_1 0.06 0.00 0.00 0.02 0.10
## Social Connectedness_0 0.15 0.00 0.04 0.30 0.10
## Social Connectedness_1 0.15 0.00 0.04 0.30 0.10
## Self-distancing_0 0.04 0.10 0.01 0.15 0.08
## Self-distancing_1 0.04 0.10 0.01 0.15 0.08
## Socio-econ Equality_0 0.03 0.00 0.01 0.02 0.00
## Socio-econ Equality_1 0.03 0.00 0.01 0.02 0.00
## Sympathy&Compassion_0 0.13 0.01 0.02 0.09 0.00
## Sympathy&Compassion_1 0.13 0.01 0.02 0.09 0.00
## Take Science Seriously_0 0.00 0.00 0.00 0.00 0.00
## Take Science Seriously_1 0.00 0.00 0.00 0.00 0.00
## Personal Resilience_0 0.31 0.02 0.07 0.01 0.10
## Personal Resilience_1 0.31 0.02 0.07 0.01 0.10
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Balance Diverse Interests_0 0.09 0.03 0.02 0.72 0.27
## Balance Diverse Interests_1 2.50 0.76 0.54 19.21 7.16
## Clear Government\nCommunication_0 0.00 0.00 0.00 0.00 0.00
## Clear Government\nCommunication_1 0.07 0.01 0.00 0.07 0.00
## Solidarity_0 0.00 0.89 0.02 0.95 0.23
## Solidarity_1 0.00 8.89 0.19 9.48 2.34
## Polit.Cooperation_0 0.25 1.75 0.14 0.00 0.16
## Polit.Cooperation_1 3.20 22.31 1.80 0.05 2.05
## Critical Thinking_0 0.29 0.07 0.42 1.43 0.00
## Critical Thinking_1 2.88 0.67 4.20 14.32 0.03
## Embrace New Tech_0 0.00 0.10 0.25 0.03 0.17
## Embrace New Tech_1 0.01 5.24 13.59 1.53 9.19
## Agency/Control_0 0.46 0.15 2.46 0.08 0.98
## Agency/Control_1 2.08 0.70 11.07 0.37 4.43
## Follow Rules_0 0.50 0.81 0.13 0.01 0.02
## Follow Rules_1 6.43 10.29 1.67 0.07 0.26
## Optimism/Positivity_0 0.54 1.55 0.54 0.49 0.68
## Optimism/Positivity_1 3.73 10.66 3.73 3.34 4.65
## Learning from Pandemics_0 1.14 1.05 0.21 0.00 0.08
## Learning from Pandemics_1 11.39 10.51 2.11 0.02 0.83
## Improved Communication_0 0.01 0.00 0.01 0.04 0.03
## Improved Communication_1 0.77 0.05 0.37 2.40 1.73
## Prosocial Behavior_0 0.06 0.00 0.03 0.31 0.30
## Prosocial Behavior_1 1.65 0.02 0.79 8.18 7.97
## Long-term Orientation_0 1.20 1.24 0.66 0.06 0.04
## Long-term Orientation_1 8.24 8.51 4.54 0.38 0.30
## Acknowledge Uncertainty_0 0.14 0.00 1.21 0.12 1.21
## Acknowledge Uncertainty_1 1.36 0.03 12.15 1.25 12.11
## Live in the Moment_0 0.07 0.28 1.85 0.00 0.31
## Live in the Moment_1 0.65 2.80 18.45 0.05 3.10
## Patience_0 2.02 0.41 0.04 0.01 0.56
## Patience_1 16.46 3.37 0.36 0.05 4.57
## Perspective-taking_0 0.06 0.03 0.61 0.00 0.77
## Perspective-taking_1 0.79 0.41 7.82 0.06 9.84
## What's Important?_0 0.26 0.01 0.03 0.14 0.65
## What's Important?_1 2.13 0.06 0.21 1.10 5.28
## Social Connectedness_0 1.67 0.05 0.59 4.39 1.57
## Social Connectedness_1 4.89 0.15 1.74 12.85 4.61
## Self-distancing_0 0.12 0.35 0.04 0.64 0.38
## Self-distancing_1 1.48 4.46 0.49 8.15 4.83
## Socio-econ Equality_0 0.02 0.00 0.01 0.02 0.00
## Socio-econ Equality_1 1.15 0.13 0.28 1.33 0.12
## Sympathy&Compassion_0 0.63 0.04 0.10 0.59 0.02
## Sympathy&Compassion_1 5.15 0.33 0.80 4.82 0.18
## Take Science Seriously_0 0.00 0.00 0.00 0.00 0.00
## Take Science Seriously_1 0.07 0.01 0.00 0.07 0.00
## Personal Resilience_0 0.97 0.06 0.27 0.06 0.43
## Personal Resilience_1 12.41 0.77 3.48 0.75 5.54
Similar to prior results, we can address the question of diversity by examining the degree to which scores across themes are reducible to common components, examining MCA results.
It appears that 8 components is as good a start to account for 25 themes for Question 5 (wisdom now), as any other. Though 12 dimensions are providing at least 4 % of variance, scree plot line suggests a bent after 8 components.
Again, keep in mind that reducing 24 items to 8 components is not parsimonious (and its even worse with 12 components). Moreover, when we reduce the items to 8 components, the first component explains only 9.6 % of the variance, and in total 8 components explain 57% of variance.
Given that each theme by default explains 4.2% of the variance (1/23), this is not much.
Furthermore, each of these components is largely based on 1-2 items (cos2 > .4).
In short, MCA results show substantial diversity.
10.7 Network Graph
Even after removing negligible correlations (r < .17), cluster analyses on top of the network graphs show five clusters, four of which are strongly inter-related (embrace new tech. and optimism/positivity, solidarity and prosocial behavior, self-distancing and pol. cooperation):
Five clusters:
* Solidarity & pol. cooperation
* Resilience-building: Establish agency, patience, prosociality,, optimism
* Focus on here & now (incl. role of new tech.)
* Meta-cognition: self-distancing, balancing different interests, critical thinking
* Social capital: social connectedness, improved communication, socio-econ equality, sympathy & compassion
10.8 Convergence vs. divergence of themes over time
Once again, we binned scores in the the same four groups as above: June, July, Sept/early Oct, and second part of Oct-early Dec.
Focus on meta-cognition is the top category across the summer and early fall, but becomes second frequent in late fall.
Focus on well-being enhancement and agency/control are more prevalent among researchers surveyed in late fall.
11 Total wisdom frequencies across questions
When examining categories over time, it becomes apparent that most frequent themes for wisdom either concern interpersonal prosociality (solidarity, social connectedness) or societal level-prosocility (asking for structural changes for a fair and just society), as well as meta-cognitive strategies (perspective-taking, sympathy & compassion, long-term focus, acknowledge unceryainty, self-distancing, critical thinking)
12 Does dialecticism and knowledge of wisdom scholarship impact type of wisdom experts recommended?
12.1 Dialectical thinking
So far, we just examined relative frequencies for certain wisdom-related themes, separately for each question. We did not account for interdependence between responses by the same person nor did we look at actual likelihood of mentioning one vs. another category (e.g., moral vs. others or metacog vs. others). To do the latter, I restructure the dataset to a long format and perform generalized (binomial) linear mixed model with dichotomous responses (1/0) nested in participants and type of wisdom theme (moral vs. metacog vs. other), cognitive style (dialectical vs. non-dialectical) and their interaction as predictors. If cognitive style of experts qualifies type of category mentioned, we should expect a significant interaction.
It turns out, it does not matter, with no significant differences for any of the questions or in total.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 89.0629 1 <0.0000000000000002 ***
## Dialectic_Final 0.8318 1 0.3618
## type 1.1130 2 0.5732
## Q 1.4624 2 0.4813
## Dialectic_Final:type 2.7912 2 0.2477
## Dialectic_Final:Q 1.7509 2 0.4167
## type:Q 5.2695 4 0.2607
## Dialectic_Final:type:Q 2.6163 4 0.6239
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 89.1773 1 <0.0000000000000002 ***
## Dialectic_Final 0.8325 1 0.3616
## type 1.1137 2 0.5730
## Dialectic_Final:type 2.7935 2 0.2474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 107.6198 1 <0.0000000000000002 ***
## Dialectic_Final 0.8416 1 0.3589
## type 4.8428 2 0.0888 .
## Dialectic_Final:type 0.3314 2 0.8473
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 86.0876 1 <0.0000000000000002 ***
## Dialectic_Final 0.0848 1 0.7709
## type 0.7006 2 0.7045
## Dialectic_Final:type 1.1590 2 0.5602
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 32.0256 1 0.00000001522 ***
## type 4.7591 2 0.09259 .
## Dialecticism 0.0018 1 0.96612
## type:Dialecticism 1.1794 2 0.55450
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Dialecticism = Dialectical:
## contrast estimate SE df z.ratio p.value
## metacog.QALL - morals.QALL 0.0187 0.193 Inf 0.097 0.9949
## metacog.QALL - others.QALL 0.4336 0.217 Inf 1.998 0.1126
## morals.QALL - others.QALL 0.4149 0.218 Inf 1.905 0.1372
##
## Dialecticism = Not Dialectical:
## contrast estimate SE df z.ratio p.value
## metacog.QALL - morals.QALL 0.0690 0.186 Inf 0.371 0.9268
## metacog.QALL - others.QALL 0.1823 0.191 Inf 0.952 0.6072
## morals.QALL - others.QALL 0.1133 0.195 Inf 0.582 0.8295
##
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
## type = metacog.QALL:
## contrast estimate SE df z.ratio p.value
## Dialectical - Not Dialectical 0.00797 0.188 Inf 0.042 0.9661
##
## type = morals.QALL:
## contrast estimate SE df z.ratio p.value
## Dialectical - Not Dialectical 0.05827 0.192 Inf 0.304 0.7611
##
## type = others.QALL:
## contrast estimate SE df z.ratio p.value
## Dialectical - Not Dialectical -0.24335 0.220 Inf -1.104 0.2695
##
## Results are given on the log (not the response) scale.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 226.1957 1 < 0.00000000000000022 ***
## type 32.9339 1 0.000000009535 ***
## Dialecticism 0.0590 1 0.8080
## type:Dialecticism 1.1441 1 0.2848
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Dialecticism = Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.QALL - others.QALL 1.117 0.195 Inf 5.739 <.0001
##
## Dialecticism = Not Dialectical:
## contrast estimate SE df z.ratio p.value
## CWM.QALL - others.QALL 0.842 0.169 Inf 4.974 <.0001
##
## Results are given on the log (not the response) scale.
## type = CWM.QALL:
## contrast estimate SE df z.ratio p.value
## Dialectical - Not Dialectical 0.0326 0.134 Inf 0.243 0.8080
##
## type = others.QALL:
## contrast estimate SE df z.ratio p.value
## Dialectical - Not Dialectical -0.2433 0.220 Inf -1.104 0.2695
##
## Results are given on the log (not the response) scale.
12.2 Does familiarity with wisdom research influence types of categories experts mention in their recommendations?
To address this question, I perform generalized (binomial) linear mixed model with dichotomous responses (1/0) nested in participants and type of wisdom theme (moral vs. metacog vs. other), familiarity with wisdom (yes vs. no) and their interaction as predictors. If familiarity with wisdom qualifies type of category mentioned, we should expect a significant interaction.
It turns out, it does not matter for positive recommendations and for recommendations now (as well as in total), though we did observe a significant interaction for wisdom against negative consequences: Experts familiar with wisdom scholarship were significantly more likely to mention meta-cognition than other categories, whereas no such differences among those folks not familiar with wisdom scholarship.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 129.2972 1 <0.0000000000000002 ***
## FamiliarWisdom 1.8749 1 0.1709
## type 3.2453 2 0.1974
## Q 0.1644 2 0.9211
## FamiliarWisdom:type 3.3739 2 0.1851
## FamiliarWisdom:Q 0.1283 2 0.9379
## type:Q 3.6738 4 0.4519
## FamiliarWisdom:type:Q 2.6443 4 0.6190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: count
## Chisq Df Pr(>Chisq)
## (Intercept) 27.0646 1 0.0000001968 ***
## type 1.7765 2 0.41137
## FamiliarWisdom 6.2527 1 0.01240 *
## type:FamiliarWisdom 6.1178 2 0.04694 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## FamiliarWisdom = No:
## contrast estimate SE df z.ratio p.value
## metacog.QALL - morals.QALL -0.130 0.162 Inf -0.805 0.6998
## metacog.QALL - others.QALL 0.087 0.170 Inf 0.511 0.8662
## morals.QALL - others.QALL 0.217 0.165 Inf 1.313 0.3881
##
## FamiliarWisdom = Yes:
## contrast estimate SE df z.ratio p.value
## metacog.QALL - morals.QALL 0.442 0.247 Inf 1.791 0.1725
## metacog.QALL - others.QALL 0.793 0.276 Inf 2.869 0.0115
## morals.QALL - others.QALL 0.351 0.299 Inf 1.173 0.4690
##
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 3 estimates
## type = metacog.QALL:
## contrast estimate SE df z.ratio p.value
## No - Yes -0.4855 0.194 Inf -2.501 0.0124
##
## type = morals.QALL:
## contrast estimate SE df z.ratio p.value
## No - Yes 0.0864 0.222 Inf 0.389 0.6971
##
## type = others.QALL:
## contrast estimate SE df z.ratio p.value
## No - Yes 0.2207 0.260 Inf 0.848 0.3966
##
## Results are given on the log (not the response) scale.
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 129.1146 1 <0.0000000000000002 ***
## FamiliarWisdom 1.8740 1 0.1710
## type 3.2447 2 0.1974
## FamiliarWisdom:type 3.3769 2 0.1848
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 162.0690 1 < 0.0000000000000002 ***
## FamiliarWisdom 3.5665 1 0.05896 .
## type 4.7263 2 0.09412 .
## FamiliarWisdom:type 5.0113 2 0.08162 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table (Type III Wald chisquare tests)
##
## Response: value
## Chisq Df Pr(>Chisq)
## (Intercept) 125.8118 1 <0.0000000000000002 ***
## FamiliarWisdom 1.1671 1 0.2800
## type 0.0487 2 0.9759
## FamiliarWisdom:type 0.2825 2 0.8683
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
13 Relationship of Forecasts & Given Advice
A key question concerns type of advice scientists recommend for different (positive and negative forecasts) for positive and negative changes after the pandemic.
To address this question, we can examine dependencies between themes mentioned for a particular type of outcome, and subsequent mentioning of themes needed for this outcome.
13.1 Positive Consequences
Given that some themes are mentioned both as outcomes of the pandemic (i.e., forecasts) and the advice/wisdom needed to sustain positive change (e.g., critical thinking, live in the moment, political/structural change), it would be trivial to see relevant relationships. However, it would be more interesting to see relationships across themes from forecast (Q1) and corresponding advice (Q2).
13.1.1 Heatmap
One way to address this question is to examine the heatmap, with forecast themes on the vertical axis and the advice themes on the horizontal axis.
As one can see below, some of the results are indeed quite trivial. Beyond same themes mentioned for forecasts and advice about wisdom needed, another trivial observation is that greater care for elderly depends on willingness to learn from the pandemic. Nevertheless, some further observations are noteworthy. I focus on r > .3 as a cut off:
- greater science interest in the future depends on critical thinking;
- greater social connectedness and optimism/positivity depend on improved communication;
- greater health & wellbeing depends on improved work-life balance , focus on living in the moment & ability to compromise/balance diverse interests;
- greater resilience depends on sympathy & compassion;
- learning from the pandemic in the future depends on political cooperation;
- greater solidarity depends on awareness of shared humanity;
- greater transition to new technologies and reconsideration of habits depend on personal resilience;
- strongest relationship: greater resilience, embracing new tech, and reconsideration of habits depend on acknowledgment of uncertainty.
13.1.2 Q1-Q2 Edge Binding
A different, and perhaps more intuitive way to examine the relationship between themes mentioned for forecasts and advice is to examine connections between “edges” formed in the network of Questions concerning forecasts and the advice. Here, full information from the network is used to optimally visualize connections between different themes in the network.
Below, you see an edge-binding diagram visualizing the relationships. On the right, you see themes for forecasts (Q1) and on the left you see type of advice recommended (Q2). When you navigate the cursor on each theme, the graph will show you what other themes it is mostly connected to, both within the same question and across questions. As for the other network visualizations, I used r < .17 as a cut-off here.
For instance, if you navigate to Q1_Gratitude, you will see that it is related not only to Q1_living in a moment and Q1_new tech, but also Q2 focus on what’s important, Q2 living in the moment, Q2 critical thinking, and Q2 balance of diverse interests.
By inspecting all Q1 themes, we can see that themes followed by greatest number of advice-themes are:
Gratitude;
Greater appreciation of Nature;
Resilience;
Solidarity.
Conversely, by inspecting all Q2 themes, we can see that themes with greatest number of implications for forecasts are:
Acknowledgment of uncertainty;
Solidarity;
Self-distancing.
13.2 Negative Consequences
We can do the same analysis for Questions 3 (negative forecasts) and 4 (wisdom needed to prevent these forecasts).
13.2.1 Heatmap
Again, I will start with a heatmap, with forecast themes on the vertical axis and the advice themes on the horizontal axis.
Given the negative nature of the forecasts, we would not expect as many trivial results (except for things like: who do you need to reduce socio-econ or edu equality? Fight against socio-econ inequality! Or: "how do we prevent dispair? Be optimistic/positive :)). Once again, I focus on r > .3 as a cut off:
- combating estrangement/alienation, loneliness, decline in wellbeing was linked to the notion of social connectedness;
- combating economic hardships and rise in despair was linked to social support;
- combating rising social inequality was linked to solidarity;
- strongest relationships: combating problems in intimate relations, educational inequality, and child development issues were linked to ability to balance/reach a compromise across diverse interests;
- combating decline in autobiographic memory, estrangement/alienation, and well-being were linked to contextualizing one’s life experiences;
- combating irrationality depends on living in a moment/mindfulness,gratitude, and self-distancing;
- combating low trust in science was linked to self-distancing;
- combating political conflict was linked to appreciation of the concept of shared humanity;
13.2.2 Q3-Q4 Edge Binding
Once again, below you see an edge-binding diagram - a different way to visualize the relationships. On the right, you see themes for negative forecasts (Q3) and on the left you see type of advice recommended (Q4). When you navigate the cursor on each theme, the graph will show you what other themes it is mostly connected to, both within the same question and across questions. As for the other network visualizations, I used r < .17 as a cut-off here.
For instance, if you navigate to Q1_Gratitude, you will see that it is related not only to Q1_living in a moment and Q1_new tech, but also Q2 focus on what’s important, Q2 living in the moment, Q2 critical thinking, and Q2 balance of diverse interests.
By inspecting all Q3 themes, we can see that themes followed by greatest number of advice-themes are:
- Estrangement/alienation;
- Despair;
- Self-centeredness;
- Irrationality;
- Loneliness;
- Pessimism;
Conversely, by inspecting all Q4 themes, we can see that themes with greatest number of implications for forecasts are:
- Self-distancing;
- Political/structural change;
- Perspective-taking;
- Patience;
- Gratitude.